Abstract:
A method for storing user data is provided. The method includes distributing the user data throughout a plurality of storage nodes through erasure coding, wherein the plurality of storage nodes are housed within a single chassis that couples the storage nodes as a cluster, each of the plurality of storage nodes having nonvolatile solid-state memory for user data storage. The method includes performing analytics on user data and grouping portions of the user data according to results of the analytics. The method includes writing the user data to blocks of flash memory in the non-volatile solid-state memory, wherein each block receives portions of the user data grouped according to at least one of the results of the analytics.
Abstract:
A non-volatile solid-state storage is provided. The non-volatile solid state storage includes a non-volatile random access memory (NVRAM) addressable by a processor external to the non-volatile solid state storage. The NVRAM is configured to store user data and metadata relating to the user data. The non-volatile solid state storage includes a flash memory addressable by the processor. The flash memory is configured to store the user data responsive to the processor directing transfer of the user data from the NVRAM to the flash memory.
Abstract:
A plurality of storage nodes in a single chassis is provided. The plurality of storage nodes in the single chassis is configured to communicate together as a storage cluster. Each of the plurality of storage nodes includes nonvolatile solid-state memory for user data storage. The plurality of storage nodes is configured to distribute the user data and metadata associated with the user data throughout the plurality of storage nodes such that the plurality of storage nodes maintain the ability to read the user data, using erasure coding, despite a loss of two of the plurality of storage nodes. The plurality of storage nodes configured to initiate an action based on the redundant copies of the metadata, responsive to achieving a level of redundancy for the redundant copies of the metadata. A method for accessing user data in a plurality of storage nodes having nonvolatile solid-state memory is also provided.
Abstract:
In some embodiments, a method for die-level monitoring is provided. The method includes distributing user data throughout a plurality of storage nodes through erasure coding, wherein the plurality of storage nodes are housed within a chassis that couples the storage nodes. Each of the storage nodes has a non-volatile solid-state storage with non-volatile memory and the user data is accessible via the erasure coding from a remainder of the storage nodes in event of two of the storage nodes being unreachable. The method includes producing diagnostic information that diagnoses the non-volatile memory on a basis of per package, per die, per plane, per block, or per page, the producing performed by each of the plurality of storage nodes. The method includes writing the diagnostic information to a memory in the storage cluster.
Abstract:
Systems and methods for performing compression of data. A data buffer is separated into equal-sized segments of data. A frequency count is performed to determine how often each segment of data appears in the data buffer. Frequently occurring segments are encoded with unique compression codes, while all other infrequently occurring segments are encoded with a common compression code. The compressed data buffer includes the compression codes, which are all of the same bit-length, and the uncompressed segments. The compression codes and the uncompressed segments are stored in the compressed data buffer in the order in which the corresponding segments appear in the original data buffer.
Abstract:
A system and method for performing copy offload operations. When a copy offload operation from a first volume (pointing to a first medium) to a second volume (pointing to a second medium) is requested, the copy offload operation is performed without accessing the data being copied. A third medium is created, and the first medium is recorded as the underlying medium of the third medium. The first volume is re-pointed to the third medium. Also, a fourth medium is created, the second volume is re-pointed to the fourth medium, and the second medium is recorded as the underlying medium of the targeted range of the fourth medium. All other ranges of the fourth medium have the second medium as their underlying medium.
Abstract:
A system, method, and computer-readable storage medium for protecting a set of storage devices using a secret sharing scheme. The data of each storage device is encrypted with a key, and the key is encrypted based on a shared secret and a device-specific value. Each storage device stores a share and its encrypted key, and if a number of storage devices above a threshold are available, then the shared secret can be reconstructed from the shares and used to decrypt the encrypted keys. Otherwise, the secret cannot be reconstructed if less than the threshold number of storage devices are accessible, and then data on the storage devices will be unreadable.
Abstract:
A system and method for intra-device data protection in a RAID array. A computer system comprises client computers and data storage arrays coupled to one another via a network. A data storage array utilizes solid-state drives and Flash memory cells for data storage. A storage controller within a data storage array is configured to identify a unit of data stored in the data storage subsystem, wherein said unit of data is stored across at least a first storage device and a second storage device of the plurality of storage devices, each of the first storage device and the second storage device storing intra-device redundancy data corresponding to the unit of data; and change an amount of intra-device redundancy data corresponding to the unit of data on only the first storage device.
Abstract:
A method for adjustable error correction in a storage cluster is provided. The method includes determining health of a non-volatile memory of a non-volatile solid-state storage unit of each of a plurality of storage nodes in a storage cluster on a basis of per flash package, per flash die, per flash plane, per flash block, or per flash page. The determining is performed by the storage cluster. The plurality of storage nodes is housed within a chassis that couples the storage nodes as the storage cluster. The method includes adjusting erasure coding across the plurality of storage nodes based on the health of the non-volatile memory and distributing user data throughout the plurality of storage nodes through the erasure coding. The user data is accessible via the erasure coding from a remainder of the plurality of storage nodes if any of the plurality of storage nodes are unreachable.