Abstract:
A method for manufacturing a variable resistance element includes the steps of: depositing a variable resistance material (106) in a contact hole (105), which is formed on an interlayer insulating layer (104) on a substrate and has a lower electrode (103) at a bottom portion thereof, such that an upper surface of the variable resistance material (106) in the contact hole (105) is located lower than an upper surface of the interlayer insulating layer (104); depositing an upper electrode material on the deposited variable resistance material (106) such that an upper surface of the upper electrode material in the contact hole (105) is located higher than the upper surface of the interlayer insulating layer (104); and element-isolating by a CMP the variable resistance element including the variable resistance material (106) and the upper electrode material.
Abstract:
A resistance variable layer has a characteristic in which the resistance variable layer changes to a second resistance state (RL) in such a manner that its resistance value stops decreasing when an interelectrode voltage reaches a first voltage (V1) which is a negative voltage, the resistance variable layer changes to a first resistance state (RH) in such a manner that its resistance value starts increasing when the interelectrode voltage reaches a second voltage (V2) which is a positive voltage which is equal in absolute value to the first voltage, the resistance variable layer changes to the first resistance state in such a manner that the resistance variable layer flows an interelectrode current such that the interelectrode voltage is maintained at a third voltage (V3) higher than the second voltage, when the interelectrode voltage reaches the third voltage, and the resistance variable layer changes to the first resistance state in such a manner that its resistance value stops increasing when the interelectrode current reaches a first current (Ilim) in a state where the interelectrode voltage is not lower than the second voltage and lower than the third voltage, and the load resistor has a characteristic in which when the electric pulse application device outputs an electric pulse of a second application voltage (VP2), a current flowing by applying to the load resistor, a voltage obtained by subtracting the third voltage from the second application voltage, is not higher than a first current value.
Abstract:
Provided is a programming method for improving the retention characteristics of information in a variable resistance nonvolatile memory element. The method includes: a first writing process of applying a first voltage V1 having a first polarity to set the variable resistance nonvolatile storage element to a low resistance state LR indicating first logic information (S01); a second writing process of applying a second voltage V2 having a second polarity different from the first polarity to set the variable resistance nonvolatile storage element to a first high resistance state HR1 (S02); and a partial write process of applying a third voltage V3 having the first polarity so as to set the variable resistance layer to a second high resistance state HR2 indicating second logic information different from the first logic information (S05). Here, |V3|
Abstract:
A lower electrode layer 2, an upper electrode layer 4 formed above the lower electrode layer 2, and a metal oxide thin film layer 3 formed between the lower electrode layer 2 and the upper electrode layer 4 are provided. The metal oxide thin film layer 3 includes a first region 3a whose value of resistance increases or decreases by an electric pulse that is applied between the lower electrode layer 2 and the upper electrode layer 4 and a second region 3b arranged around the first region 3a and having a larger content of oxygen than the first region 3a, wherein the lower and upper electrode layers 2 and 4 and at least a part of the first region 3a are arranged so as to overlap as viewed from the direction of the thickness of the first region 3a.
Abstract:
Provided is a nonvolatile storage device (200) capable of stably operating without increasing a size of a selection transistor included in each of memory cells. The nonvolatile storage device (200) includes: a semiconductor substrate (301) which has a P-type well (301a) of a first conductivity type; a memory cell array (202) which includes memory cells (M11) or the like each of which includes a variable resistance element (R11) and a transistor (N11) that are formed above the semiconductor substrate (301) and connected in series; and a substrate bias circuit (220) which applies, to the P-type well (301a), a bias voltage in a forward direction with respect to a source and a drain of the transistor (N11), when a voltage pulse for writing is applied to the variable resistance element (R11) included in the selected memory cell (M11) or the like.
Abstract:
A method of programming a variable resistance element to be operated with stability and at a high speed is provided. The method programs a nonvolatile variable resistance element (10) including a variable resistance layer (3), which changes between a high resistance state and a low resistance state depending on a polarity of an applied electric pulse, and a lower electrode (2) and an upper electrode (4). The method includes: writing steps (S11) and (S15) to cause the variable resistance layer (3) to change from the low resistance state to the high resistance state by applying a write voltage pulse; and an erasing step (S13) to cause the variable resistance layer (3) to change from the high resistance state to the low resistance state. In the writing steps, a write voltage pulse is applied between the electrodes so as to satisfy |Vw1|>|Vw| where Vw1 represents a voltage value of the write voltage pulse in the first writing step (S11) after manufacturing the variable resistance element (10) and Vw represents a voltage value of the write voltage pulse in writing steps after the first writing step (S15) after manufacturing the variable resistance element (10).
Abstract:
A nonvolatile memory element (100) includes a variable resistance layer (107) including a first metal oxide MOx and a second metal oxide MOy, and reaction energy of chemical reaction related to the first metal oxide, the second metal oxide, oxygen ions, and electrons is 2 eV or less. The chemical reaction is expressed by a formula 13, where a combination (MOx, MOy) of MOx and MOy is selected from a group including (Cr2O3, CrO3), (Co3O4, Co2O3), (Mn3O4, Mn2O3), (VO2, V2O5), (Ce2O3, CeO2), (W3O8, WO3), (Cu2O, CuO), (SnO, SnO2), (NbO2, Nb2O5), and (Ti2O3, TiO2). [Mathematical Expression 13] MOX+(y−x)O2−MOy+2(y−x)e− (Formula 13)
Abstract translation:非易失性存储元件(100)包括可变电阻层(107),其包括第一金属氧化物MOx和第二金属氧化物MOy,以及与第一金属氧化物,第二金属氧化物,氧离子和 电子为2eV以下。 化学反应由式13表示,其中MOx和MOy的组合(MOx,MOy)选自(Cr 2 O 3,CrO 3),(Co 3 O 4,Co 2 O 3),(Mn 3 O 4,Mn 2 O 3),(VO 2,V 2 O 5) ),(Ce 2 O 3,CeO 2),(W3O 8,WO 3),(Cu 2 O,CuO),(SnO,SnO 2),(NbO 2,Nb 2 O 5)和(Ti 2 O 3,TiO 2)。 [数学表达式13] MOX +(y-x)O 2 -Moy + 2(y-x)e-(式13)
Abstract:
A method for manufacturing a variable resistance element includes the steps of: depositing a variable resistance material (106) in a contact hole (105), which is formed on an interlayer insulating layer (104) on a substrate and has a lower electrode (103) at a bottom portion thereof, such that an upper surface of the variable resistance material (106) in the contact hole (105) is located lower than an upper surface of the interlayer insulating layer (104); depositing an upper electrode material on the deposited variable resistance material (106) such that an upper surface of the upper electrode material in the contact hole (105) is located higher than the upper surface of the interlayer insulating layer (104); and element-isolating by a CMP the variable resistance element including the variable resistance material (106) and the upper electrode material.
Abstract:
The present invention is configured such that a resistance variable element (16) and a rectifying element (20) are formed on a substrate (12). The resistance variable element (16) is configured such that a resistance variable layer (14) made of a metal oxide material is sandwiched between a lower electrode (13) and an upper electrode (15). The rectifying element (20) is connected to the resistance variable element (16), and is configured such that a blocking layer (18) is sandwiched between a first electrode layer (17) located on a lower side of the blocking layer (18) and a second electrode layer (19) located on an upper side of the blocking layer (18). The resistance variable element (16) and the rectifying element (20) are connected to each other in series in a thickness direction of the resistance variable layer (14), and the blocking layer (18) is formed as a barrier layer having a hydrogen barrier property.
Abstract:
[Objective] A nonvolatile memory apparatus and a nonvolatile data storage medium of the present invention, including nonvolatile memory elements each of which changes its resistance in response to electric pulses applied, comprises a first write circuit (106) for performing first write in which a first electric pulse is applied to the nonvolatile memory element to switch a resistance value of the nonvolatile memory element from a first resistance value to a second resistance value and a second electric pulse which is opposite in polarity to the first electric pulse is applied to the nonvolatile memory element to switch the resistance value of the nonvolatile memory element from the second resistance value to the first resistance value; and a second write circuit (108) for performing second write in which a third electric pulse is applied to the nonvolatile memory element to switch the resistance value of the nonvolatile memory element from a third resistance value to a fourth resistance value and a fourth electric pulse which is identical in polarity to the third electric pulse is applied to the nonvolatile memory element to switch the resistance value of the nonvolatile memory element from the fourth resistance value to a fifth resistance value.