摘要:
A nonvolatile memory element (20) of the present invention comprises a resistance variable element (14) and a diode (18) which are formed on a substrate (10) such that the resistance variable element (14) has a resistance variable layer (11) sandwiched between a lower electrode (12) and an upper electrode (13), and the diode (18) which is connected in series with the resistance variable element (14) in the laminating direction and has an insulating layer or semiconductor layer (15) sandwiched between a first electrode (16) at the lower side and a second electrode (17) at the upper side. The resistance variable layer (11) is embedded in a first contact hole (21) formed on the lower electrode (12). A first area (22) where insulating layer or semiconductor layer (15) of the diode (18) is in contact with a first electrode (16) of the diode (18) is larger than at least one of a second area (23) where the resistance variable layer (11) is in contact with the upper electrode (13) and a third area (24) where the resistance variable layer (11) is in contact with the lower electrode (12).
摘要:
A nonvolatile semiconductor memory apparatus (10) of the present invention comprises a substrate (10), lower-layer electrode wires (15) provided on the substrate (11), an interlayer insulating layer (16) which is disposed on the substrate (11) including the lower-layer electrode wires (15) and is provided with contact holes at locations respectively opposite to the lower-layer electrode wires (15), resistance variable layers (18) which are respectively connected to the lower-layer electrode wires (15); and non-ohmic devices (20) which are respectively provided on the resistance variable layers (18) such that the non-ohmic devices are respectively connected to the resistance variable layers (18). The non-ohmic devices (20) each has a laminated-layer structure including plural semiconductor layers, a laminated-layer structure including a metal electrode layer and an insulator layer, or a laminated-layer structure including a metal electrode layer and a semiconductor layer. One layer of the laminated-layer structure is embedded to fill each of the contact holes and the semiconductor layer or the insulator layer which is the other layer of the laminated-layer structure has a larger area than an opening of each of the contact holes and is provided on the interlayer insulating layer (16).
摘要:
The present invention is configured such that a resistance variable element (16) and a rectifying element (20) are formed on a substrate (12). The resistance variable element (16) is configured such that a resistance variable layer (14) made of a metal oxide material is sandwiched between a lower electrode (13) and an upper electrode (15). The rectifying element (20) is connected to the resistance variable element (16), and is configured such that a blocking layer (18) is sandwiched between a first electrode layer (17) located on a lower side of the blocking layer (18) and a second electrode layer (19) located on an upper side of the blocking layer (18). The resistance variable element (16) and the rectifying element (20) are connected to each other in series in a thickness direction of the resistance variable layer (14), and the blocking layer (18) is formed as a barrier layer having a hydrogen barrier property.
摘要:
A lower electrode layer 2, an upper electrode layer 4 formed above the lower electrode layer 2, and a metal oxide thin film layer 3 formed between the lower electrode layer 2 and the upper electrode layer 4 are provided. The metal oxide thin film layer 3 includes a first region 3a whose value of resistance increases or decreases by an electric pulse that is applied between the lower electrode layer 2 and the upper electrode layer 4 and a second region 3b arranged around the first region 3a and having a larger content of oxygen than the first region 3a, wherein the lower and upper electrode layers 2 and 4 and at least a part of the first region 3a are arranged so as to overlap as viewed from the direction of the thickness of the first region 3a.
摘要:
A nonvolatile semiconductor memory apparatus including a substrate, lower-layer electrode wires provided on the substrate, an interlayer insulating layer provided with contact holes at locations respectively opposite to the lower-layer electrode wires, resistance variable layers which are respectively connected to the lower-layer electrode wires; and non-ohmic devices which are respectively provided on the resistance variable layers. The non-ohmic devices each has a laminated-layer structure including plural semiconductor layers, a laminated-layer structure including a metal electrode layer and an insulator layer, or a laminated-layer structure including a metal electrode layer and a semiconductor layer. One layer of the laminated-layer structure is embedded to fill each of the contact holes and the semiconductor layer or the insulator layer which is the other layer of the laminated-layer structure has a larger area than an opening of each of the contact holes and is provided on the interlayer insulating layer.
摘要:
In a current rectifying element (10), a barrier height φA of a center region (14) of a barrier layer (11) in a thickness direction thereof sandwiched between a first electrode layer (12) and a second electrode layer (13) is formed to be larger than a barrier height φB of a region in the vicinity of an interface (17) between the barrier layer (11) and the first electrode layer (12) and an interface (17) between the barrier layer (11) and the second electrode layer (13). The barrier layer (11) has, for example, a triple-layer structure of barrier layers (11a), (11b) and (11c). The barrier layers (11a), (11b) and (11c) are, for example, formed by SiN layers of SiNx2, SiNx1, and SiNx1 (X1
摘要:
A method for manufacturing a nonvolatile storage element that minimizes shape shift between an upper electrode and a lower electrode, and which includes: depositing, in sequence, a connecting electrode layer which is conductive, a lower electrode layer and a variable resistance layer which are made of a non-noble metal nitride and are conductive, an upper electrode layer made of noble metal, and a mask layer; forming the mask layer into a predetermined shape; forming the upper electrode layer, the variable resistance layer, and the lower electrode layer into the predetermined shape by etching using the mask layer as a mask; and removing, simultaneously, the mask and a region of the connecting electrode layer that has been exposed by the etching.
摘要:
A lower electrode (22) is provided on a semiconductor chip substrate (26). A lower electrode (22) is covered with a first interlayer insulating layer (27) from above. A first contact hole (28) is provided on the lower electrode (22) to penetrate through the first interlayer insulating layer (27). A low-resistance layer (29) forming the resistance variable layer (24) is embedded to fill the first contact hole (28). A high-resistance layer (30) is provided on the first interlayer insulating layer (27) and the low-resistance layer (29). The resistance variable layer (24) is formed by a multi-layer resistance layer including a single layer of the high-resistance layer (30) and a single layer of the low-resistance layer (29). The low-resistance layer (29) forming the memory portion (25) is isolated from at least its adjacent memory portion (25).
摘要:
A nonvolatile semiconductor memory apparatus (10) of the present invention comprises a semiconductor substrate (11), an active element forming region provided on the semiconductor substrate (11) and including a plurality of active elements (12), a wire forming region which is provided on the active element forming region to electrically connect the active elements (12) and includes plural layers of semiconductor electrode wires (15, 16), a memory portion forming region (100) which is provided above the wire forming region and provided with memory portions (26) arranged in matrix, a resistance value of each of the memory portions changing according to electric pulses applied, and an oxygen barrier layer (17) which is provided between the memory portion forming region (100) and the wire forming region so as to extend continuously over at least an entire of the memory portion forming region (100).
摘要:
A lower electrode layer 2, an upper electrode layer 4 formed above the lower electrode layer 2, and a metal oxide thin film layer 3 formed between the lower electrode layer 2 and the upper electrode layer 4 are provided. The metal oxide thin film layer 3 includes a first region 3a whose value of resistance increases or decreases by an electric pulse that is applied between the lower electrode layer 2 and the upper electrode layer 4 and a second region 3b arranged around the first region 3a and having a larger content of oxygen than the first region 3a, wherein the lower and upper electrode layers 2 and 4 and at least a part of the first region 3a are arranged so as to overlap as viewed from the direction of the thickness of the first region 3a.