Abstract:
The invention provides an image display device that has an especially satisfactory display quality for animated images, and sufficiently suppresses the irregularities of display quality among pixels. The image display device includes a light emitting drive means that drives a light emitting means, based on an analog display signal inputted to the pixels, and a light emitting control switch for controlling a light-on or light-off of the light emitting means on one end of the light emitting drive means in each pixel.
Abstract:
The present invention provides a liquid crystal display device which includes a first pixel and a second pixel which are arranged close to each other and are allocated to the same color, and color filters which differ in color tone and are formed on the first pixel and the second pixel, wherein a voltage for driving liquid crystal of the first pixel and a voltage for driving liquid crystal of the second pixel are controlled independently from each other.
Abstract:
A display device includes a divided display region that includes pixels and gate drivers each configured to scan gate lines included in the divided display region. The display device also includes source drivers each configured to output, for each of groups of data lines, a video signal based on a grayscale signal in order from a corresponding gate driver side based on each delay amount set in advance and a register unit configured to store the each delay amount. The register unit stores the each delay amount so that, when at least one gate driver scans in a first order from an edge of the divided display region toward a center, the video signal corresponding to the pixels positioned on a centermost side of the display region is output to the pixels, in a period including a part of a vertical flyback period of after one frame period has finished.
Abstract:
A display device includes a first common bus line electrically connected to common wirings, a second common bus line electrically connected to the first common bus line, and connection wirings for supplying a common voltage to the second common bus line. The second common bus line is divided into a plurality of division wirings. A column direction width of a first division wiring connected to a first connection wiring close to the first common bus line is smaller than a column direction width of a second division wiring connected to a second connection wiring far from the first common bus line.
Abstract:
Provided is a liquid crystal display device, including: an array substrate; a plurality of pixels sectioned by video signal lines and scanning signal lines formed on the array substrate; a TFT arranged for each of the plurality of pixels; and a pixel electrode arranged inside each of the plurality of pixels. The TFT includes a channel semiconductor layer and the pixel electrode that are formed of a seamless layer made of an oxide semiconductor. The pixel electrode has an electrical conductivity larger than an electrical conductivity of the channel semiconductor layer under a state in which a gate voltage is not applied.
Abstract:
To form a sufficiently large storage capacitor, a liquid crystal display device includes a liquid crystal display panel having a first substrate, a second substrate, and a liquid crystal held between the first substrate and the second substrate, the liquid crystal display panel having multiple pixels arranged in matrix. The first substrate has, in a transmissive display area provided in each of the pixels, a laminated structure containing a first transparent electrode, a first insulating film, a second transparent electrode, a second insulating film, and a third transparent electrode which are laminated in this order. The first transparent electrode and the second transparent electrode are electrically insulated from each other and together form a first storage capacitor through the first insulating film, and the second transparent electrode and the third transparent electrode are electrically insulated from each other and together form a second storage capacitor through the second insulating film.
Abstract:
A liquid crystal display device includes: a pair of substrates at least one of which is transparent; a liquid crystal layer disposed between the pair of substrates; an electrode group formed on at least one substrate of the pair of substrates, for applying an electric field to the liquid crystal layer; a plurality of active elements connected to the electrode group; and a liquid crystal alignment film disposed on at least one substrate of the pair of substrates, in which the liquid crystal alignment film, which is formed by a photo-alignment process, contains polyimide formed using tetracarboxylic acid dianhydride and/or diamine each having a specific chemical structure.
Abstract:
A liquid crystal display device includes first and second substrates, at least one of which is transparent, a liquid crystal layer which is disposed between the first and second substrates, a pixel electrode and a common electrode which are formed on one of the first and second substrates and which apply an electric field to the liquid crystal layer, a plurality of active elements which is connected to the pixel electrode and the common electrode, an alignment film which is disposed on at least one of the first and second substrates and has one surface contacting the liquid crystal layer, and an underlying layer which is disposed on at least one of the first and second substrates and contacts the other surface of the alignment film. The pixel electrode is laminated on the common electrode having a plane shape through an isolation film.
Abstract:
A display device includes a plurality of pixels in matrix, a substrate on which the plurality of pixels are formed, and a support member under the substrate. The substrate is arranged on a front surface of the support member and a plurality of recesses are formed on a rear surface of the support member. Each of the substrate and the support member is formed in substantially rectangular shape and has a first side, a second side, a third side facing to the first side, and a fourth side facing to the second side. Each of the plurality of recesses extends in a first direction extending substantially in parallel to the first side and the third side.
Abstract:
To achieve improved detection accuracy and time and position resolutions in an in-cell type capacitive touch sensor embedded in a liquid crystal panel of a liquid crystal display device, a drive electrode of the touch sensor is formed in a boundary region for separating pixel electrodes formed on a surface of a TFT substrate on a liquid crystal side, and a detection electrode is formed in a region of an opposing substrate that opposes the boundary region. A drive signal is supplied to the drive electrode to cause a voltage change, and based on the voltage change in the detection electrode caused thereby, a capacitance change in an opposing part between the drive electrode and the detection electrode is detected, to thereby detect contact of an object to a display surface near the opposing part in a liquid crystal panel.