Abstract:
A brushless synchronous electrical machine includes a rotor rotating about a rotor axis, and a stator that includes at least one set of magnetically active stator cores projecting radially outward from the axis, and that also includes magnetically interactive crossbars on the radially outward ends of the stator cores. The rotor includes one or more magnetically active projections that sweep past the radially inward facing surfaces of the crossbars as the rotor rotates. Preferably, there are two sets of stator cores, displaced axially and staggered azimuthally with respect to each other. Stator windings are wound toroidally about the stator cores. The rotor is provided with a magnetic field, preferably by electrical current in one or more axial windings wound toroidally with respect to the rotor axis.
Abstract:
A brushless DC motor, whose stator (10) is a combination of stator yokes (11, 16). a bobbin (14) on which a magnetic field coil (15) is wound and to which terminal pins are provided, and a base plate (20). The stator (10) is fixed to the base plate (20) by a protrusion (12c) provided on the bobbin (14) or by a flange (18a) formed on a bearing. The widths of magnetic poles (11a, 16a) of the stator, which are measured in the circumferential direction of the stator, are smaller than the width of one of the poles of a rotor magnet (5). Thereby, the position of a stable point is a maximum excitation torque position. Further, a magnetic pole sensing element (21) is provided at a place which is shifted in the circumferential direction from the middle position of one of the magnetic poles of the rotor magnet (5).
Abstract:
A bicycle dynamo having enhanced power dynamics by having a large number of magnets 63 in alternate polarity lined up at a fixed interval along the inner circumference of the rotating mechanism 60. A circular lining 70 is outfitted and anchored around the perimeter of the main axle 20 with a transformer strapped to it. The transformer container a coil unit 81 and tow core parts; with the two core units sandwiching the coil unit 81 at its two sides. Each of the core unit is a stack having two or more core discs 82a, 82b. At an even interval around the circumference of the core disks 82a, 82b, fixed number of raised anchors 821a, 821b are formed that interconnect with different core disk anchors 821a, 821b to form a fixed set of the claw unit. Furthermore, each of the claw unit from the two core components 82 are extended out between the coil unit 81 and the magnets 63.
Abstract:
A bicycle generator-containing hub having a hub spindle (6), a hub body (2) rotatably mounted on the hub spindle (6), and a generator (10) disposed inside the hub body (2). The generator includes a cylindrical magnet assembly (12) having north poles and south poles arranged alternately along an inner peripheral wall of the hub body (2), and a plurality of generating coil units (11a, 11b, 11c) arranged inside the cylindrical magnet assembly (12) and axially of the hub spindle. Each of the generating coil units includes a first core element (50a, 50b, 50c) and a second core element (60a, 60b, 60c) opposed to each other axially of the hub spindle, and a generating coil (14) disposed between the first and second core elements to be coaxial with the hub spindle. The first core element has magnetic poles (51a, 51b, 51c) arranged at intervals in peripheral positions thereof and extending toward the second core element. The second core element has magnetic poles (61a, 61b, 61c) arranged at intervals in peripheral positions thereof and extending toward the first core element. An adjacent pair of the generating coil units are arranged to have the second core element (60a) of one generating coil unit (11a) in contact with the first core element (50b) of the other (11b), such that the magnetic poles (51a) of the first core element (50a) of the one generating coil unit (11a) and the magnetic poles (61b) of the second core element (60b) of the other generating coil unit (11b) are in corresponding positions circumferentially of the hub spindle.
Abstract:
A transverse flux motor includes an outer stator having a plurality of outer stator soft iron elements which are substantially disposed with uniform separation from one another. The flux motor further includes an inner stator having a plurality of inner stator soft iron elements. The inner stator further includes at least one anchor winding. The motor has a rotor which, looking at it in a section perpendicular to the axis, is built of alternating magnets and soft iron elements. The outer stator is free from anchor windings. Also, the outer stator soft iron elements are disposed in such a way that at least one gap region is provided which is larger than the space provided between the remaining neighboring stator soft iron elements. At least indirect means are provided in this region to compensate magnetic end effects.
Abstract:
The present invention concerns an electromechanical transducer exhibiting a configuration of the cylindrical type and adapted in particular to serve as a stepping motor. In a three-phase embodiment, the transducer according to the invention comprises a stator (2) and a rotor (4) capable of turning around a rotation axis (6). The stator (2) comprises three pole pieces (8, 10, 12) each having a polar arm (14, 16, 18) oriented in the direction of the rotation axis of the rotor and bearing an energization winding (32, 34, 36).
Abstract:
A cooling apparatus is provided for an AC generator, particularly for a transverse-flow generator having a stator with at least one armature winding, as well as a rotor disposed opposite the armature winding. Collector rings are secured to a carrier disk attached to a rotor shaft. The collector rings have a plurality of polarized magnets and magnetizable collector elements in alternating sequence disposed therein. At least one cooling channel through which a coolant can flow is provided in the vicinity of the carrier disk. The cooling channel is separated from the carrier disk only by a channel cover which has a minimal thickness and by the air gap between the rotor and the stator.
Abstract:
A high speed non-contact beam scanning device sized and shaped to provide the ergonomic benefits of a pen or wand, yet can scan a wide angle moving beam across an information-bearing target in one or two dimensional scan patterns such as lines, rasters or other patterns in order to read information therefrom. The device is well suited for reading one or two dimensional bar-code or other printed matter. In order to achieve the high density optical packaging necessary for its high performance to size benefits the device employs a novel in-line or "axial" gyrating, or "axial" scan element. The axial scan element can accept an input light beam at one end and cause it to emerge from its opposite end as a scanned beam, propagating in the same general forward direction it had upon entering the element. Reflected light, which carries information contained on the target, is collected by an internal non-imaging light concentrator and is processed by signal processing electronics. All components are integrated into a thin low mass module small enough to fit in a pen. Communication from the device is achievable by a cable or by wireless connection.
Abstract:
An in-hub brushless permanent magnet DC motor has a radial working gap but uses coils wound in the axial direction of the motor. The coils generate fields that interact with the permanent magnet fields across the radial gap. The stator includes a plurality of angularly spaced stator teeth that have faces radially spaced across the gap from the permanent magnet. The stator teeth are connected to the base and extend axially into a cavity within the hub. The permanent magnet is a magnetically-segmented ring magnet located on an outer rim of the hub radially outwardly from the stator teeth. The magnetic flux from the permanent magnet is directed radially across the gap and into the stator teeth. Each stator tooth has an axially oriented post around which is wound a coil that generates an axial field. The axially-oriented part of each coil forms part of the magnetic circuit. The magnetic flux directed radially into each stator tooth is turned axially into the post and through the coil. The axially directed magnetic flux through the coil and post on each stator tooth is redirected from the axial direction to the circumferential direction by a ring magnetic flux guide. The ring flux guide interconnects the stator teeth and forms part of the magnetic circuit. Because the coils are wrapped around axial posts instead of the stator teeth a larger coil volume is obtained which results in higher motor efficiency and reduced heating of the bearing system. The angular spacing between adjacent teeth can be made very small or even eliminated since there is no need to locate a winding device between them as is required in conventional radial-gap motors. This results in a reduction in the motor cogging torque, which in turn allows a higher tooth/pole symmetry leading to better force balance and lower acoustic noise.
Abstract:
A non-contact light beam scan system small enough to fit into a hand holdable wand, pen or calculator size terminal incorporates a novel scan element which can scan at rates of ten to hundreds of scans per second in one or two dimensions. The device is immune to low frequency vibrations and can scan large angles of 60 degrees or more. Automatic trigger circuitry enables it to be used equally well in hand held or fixed mount applications. The depth of operating range is extended with a novel focal system which is integrated with the light source. The entire scanning system for generating a beam, focusing the beam electronically, scanning the beam, collecting light from a target and converting it into electrical signals, and automatically generating a trigger signal can work with industry standard low or high speed bar code decoders.