Abstract:
A method and an improved apparatus for clock recovery from data streams containing embedded reference clock values controlled clock source means includes of a controllable digital fractional divider means receiving a control value from digital comparator means and a clock input from a digital clock synthesizer means driven by a fixed oscillator means.
Abstract:
An improved fractional divider that comprises an integer value storage means containing the integer part of the division value nullKnull connected to the input of a programmable counter means that is configured for a count value of nullKnull or nullKnull1null depending upon the state of a count control signal and generates the output signal as well a terminal count signal which is connected to an enable input of a fractional accumulator means that produces the count control signal on an addition overflow and has a first input connected to its result output and a second input connected to the output of a fractional value storage means, containing the fractional part of the divider value.
Abstract:
A video window detector includes a region characteristic determiner to generate at least one characteristic value for at least one region of a display output; a characteristic map generator to generate an image map from the at least one characteristic value for at least one region of the display output; and a window detector to detect at least one video window dependent on the image map.
Abstract:
An embodiment of a non-volatile memory device includes: a memory array, having a plurality of non-volatile logic memory cells arranged in at least one logic row, the logic row including a first row and a second row sharing a common control line; and a plurality of bit lines. Each logic memory cell has a direct memory cell, for storing a logic value, and a complementary memory cell, for storing a second logic value, which is complementary to the first logic value in the corresponding direct memory cell. The direct memory cell and the complementary memory cell of each logic memory cell are coupled to respective separate bit lines and are placed one in the first row and the other in the second row of the respective logic row.
Abstract:
A system and method for providing a phase-locked loop that reduces the effects of jitter caused by thermal noise of a resistor in a low-pass filter in the PLL. Thermal noise from various electronic components may cause unwanted jitter is a PLL. The size of various components in the filter are typically set to specific sizes to realize a transfer function suited for loop stability and reduction in phase jitter. In one embodiment, the jitter due to thermal noise in the resistor may be reduced by reducing the size of the gain affecting the signal through this resistor. By adjusting the size of the resistor by a scaling factor as well as other components in the PLL, one may then control a voltage controlled oscillator (VCO) using two or more control signals through the LPF.
Abstract:
A differential successive approximation analog to digital converter including: a comparator; a first plurality of capacitors coupled between a corresponding plurality of first switches and a first input of the comparator, at least one of the first capacitors being arranged to receive a first component of a differential input signal; and a second plurality of capacitors coupled between a corresponding plurality of second switches and a second input of the comparator, at least one of the second capacitors being arranged to receive a second component of the differential input signal, wherein each of the first and second plurality of switches are each adapted to independently couple the corresponding capacitor to a selected one of: a first supply voltage level; a second supply voltage level; and a third supply voltage level; and control circuitry adapted to sample the differential input voltage during a sample phase, and to control the first and second switches to couple each capacitor of the first and second plurality of capacitors to the third supply voltage level at the start of a voltage conversion phase.
Abstract:
A memory cell is formed by storage latch coupled between a true bit line node and a complement bit line node. The latch has an internal true node and an internal complement node. The cell additionally includes a first transistor that is source-drain coupled between the internal true node and a word line node. A control terminal of the first transistor is coupled to receive a signal from the complement bit line node and functions to source current into the true node during write mode. The cell further includes a second transistor that is source-drain coupled between the internal complement node and the word line node. A control terminal of the second transistor is coupled to receive a signal from the true bit line node and functions to source current into the complement node during write mode.
Abstract:
An output driver circuit includes first, second, third, and fourth transistors having a common current path, wherein a gate of the first transistor receives a first switching signal, a gate of the second transistor receives a first reference voltage, a gate of the third transistor receives a second reference voltage, and a gate of the fourth transistor receives a second switching signal, and wherein a first capacitor is coupled between the gate of the first transistor and the gate of the third transistor, a second capacitor is coupled between the gate of the second transistor and the gate of the fourth transistor, and an output signal is provided at a node coupling the second and third transistors.
Abstract:
A current-steering digital-to-analog converter may include a plurality of current cells. Each current cell may comprise a dual bias switched cascode output current source/sink, a bias source, complementary bias switching elements coupled between the bias source and the bias inputs of the switched cascode output current source/sink, and complementary switching signals coupled to the control inputs of the complementary bias switching element.
Abstract:
In an embodiment are provided are a differential amplifier, a method of amplifying a differential input signal, a device including a differential amplifier, and a low voltage differential signaling receiver.