Abstract:
A contact via to a surface of a semiconductor material is provided, the contact via having a sidewall which is produced by anisotropically etching a dielectric layer which is placed on via openings. A protective layer is provided on the surface of the semiconductor material. To protect the substrate, an initial etch through an interlayer dielectric is performed to create an initial via which extends toward, but not into the substrate. At least a portion of the protective layer is retained on the substrate. In another step, the final contact via is created. During this step the protective layer is penetrated to open a via to the surface of the semiconductor material.
Abstract:
A highly sensitive defect detection method is disclosed. A medium with a refractive index greater than 1 is formed on a sample. As a result, incident light projected by a defect detecting system attenuates less when reaching the bottom defects. The detection sensitivity of the defect detecting system is enhanced accordingly.
Abstract:
Substrate isolation trench (224) are formed in a semiconductor substrate (120). Dopant (e.g. boron) is implanted into the trench sidewalls by ion implantation to suppress the current leakage along the sidewalls. During the ion implantation, the transistor gate dielectric (520) faces the ion stream, but damage to the gate dielectric is annealed in subsequent thermal steps. In some embodiments, the dopant implantation is an angled implant. The implant is performed from the opposite sides of the wafer, and thus from the opposite sides of each active area. Each active area includes a region implanted from one side and a region implanted from the opposite side. The two regions overlap to facilitate threshold voltage adjustment.
Abstract:
A data bus circuit for an integrated circuit memory includes a 4-bit bus per I/O pad that is used to connect the memory with an I/O block, but only two bits per I/O are utilized for writing. Four bits per I/O pad are used for reading. At every falling edge of an input data strobe, the last two bits are transmitted over the bus, which eliminates the need for the precise counting of input data strobe pulses. The data bus circuit is compatible with both DDR1 and DDR2 operating modes.
Abstract:
A semiconductor device includes a substrate, a gate electrode, a pair of first impurity regions, a pair of second impurity regions and at least one dummy pattern. The gate electrode is positioned above the substrate. The first impurity regions are positioned in the substrate and near both sides of the gate electrode. The second impurity regions are positioned in the first impurity regions respectively, and the dopant concentration of the first impurity regions is lower than the dopant concentration of the second impurity regions. The dummy pattern is positioned over the first impurity regions and exposes the second impurity regions.
Abstract:
A capacitor structure comprises a substrate having a contact plug, a conductive cylinder positioned on the substrate and an electroplating structure covering the conductive cylinder, wherein a bottom electrode of the capacitor structure comprises the conductive cylinder and the electroplating structure. The conductive cylinder can be a hollow conductive cylinder, and the electroplating structure comprises a first conductive layer covering the inner sidewall and bottom surface of the hollow conductive cylinder and a second conductive layer covering the first conductive layer and the outer sidewall of the hollow conductive cylinder. The conductive cylinder and the electroplating structure can be made of different conductive material, and the free end of the conductive cylinder is preferably round. The conductive cylinder can be made of titanium nitride or tantalum nitride, while the electroplating structure can be made of ruthenium or platinum.
Abstract:
A phase-change memory and fabrication method thereof are disclosed. The phase-change memory comprises a first dielectric layer with a first opening formed on a substrate. A first electrode is filled into the first opening. A second dielectric pillar is formed on the first electrode. A first conducting layer is formed on the sidewalls of the second dielectric pillar, electrically connecting the first electrode. A third dielectric layer is formed on the substrate, exposing the top surface of the first conducting layer. A phase-change layer is formed on the third dielectric layer and directly contacts the top surface of the first conducting layer. A fourth dielectric layer, having a second opening exposing the top surface of the phase-change layer, is formed on the substrate. A second conducting layer is filled into the second opening, electrically connecting to a second electrode.
Abstract:
A semiconductor device with a recessed channel and a method of fabricating the same are provided. The semiconductor device comprises a substrate, a gate, a source, a drain, and a reverse spacer. The substrate comprises a recessed trench. The gate is formed above the recessed trench and extends above the substrate. The gate further comprises a polysilicon layer and a conductive layer; wherein the polysilicon layer is formed inside the recessed trench of the substrate, and the conductive layer is formed above the polysilicon layer and extends above the substrate. Moreover, the width of the conductive layer increases gradually bottom-up. The source and the drain are formed respectively at two sides of the gate. The reverse spacer is formed above the polysilicon layer and against the sidewall of the conductive layer.
Abstract:
A method and apparatus are disclosed for reducing the concentration of chlorine and/or other bound contaminants within a semiconductor oxide composition that is formed by chemical vapor deposition (CVD) using a semiconductor-element-providing reactant such as dichlorosilane (DCS) and an oxygen-providing reactant such as N2O. In one embodiment, a DCS-HTO film is annealed by heating N2O gas to a temperature in the range of about 825° C. to about 950° C. so as to trigger exothermic decomposition of the N2O gas and flowing the heated gas across the DCS-HTO film so that disassociated atomic oxygen radicals within the heated N2O gas can transfer disassociating energy to chlorine atoms bound within the DCS-HTO film and so that the atomic oxygen radicals can fill oxygen vacancies within the semiconductor-oxide matrix of DCS-HTO film. An improved ONO structure may be formed with the annealed DCS-HTO film for use in floating gate or other memory applications.
Abstract translation:公开了一种方法和装置,用于降低通过化学气相沉积(CVD)形成的半导体氧化物组合物中的氯和/或其它结合的污染物的浓度,所述半导体氧化物组合物使用提供半导体元素的反应物如二氯硅烷(DCS)和氧 提供反应物如N 2 O。 在一个实施方案中,通过将N 2 O 2气体加热至约825℃至约950℃的温度来退火DCS-HTO膜,以引发放热分解 N 2 O气体并使加热的气体流过DCS-HTO膜,使得加热的N 2 O气体内的解离的原子氧自由基能够将分解能量转移到结合的氯原子上 在DCS-HTO膜内,使得原子氧自由基可以填充DCS-HTO膜的半导体氧化物基质内的氧空位。 可以用退火的DCS-HTO膜形成改进的ONO结构,用于浮动栅极或其他存储器应用中。
Abstract:
A vortex mask comprises a substrate, a first phase region positioned on the substrate, a second phase region surrounding the first phase region, and a third phase region positioned on the substrate and connected to the first phase region and the second phase region. When exposure beams penetrate the first phase region, the second phase region and the third region of the vortex mask, there will be 90 degrees of phase difference from each other. In addition, the first phase region and the third phase region can be positioned in a mirror image manner, and the third phase region connects to the first phase region and the second phase region in a point manner, which can be used to define the shape of a circular pattern.