Abstract:
Cermet comprising ceramic and metal components and a molten metal infiltration method and process for fabrication thereof. The light weight cermets having improved porosity, strength, durability, toughness, elasticity fabricated from presintered ceramic powder infiltrated with a molten metal or metal alloy. Alumina titanium cermets biocompatible with the human body suitable for bone and joint replacements.
Abstract:
Diamond bonded constructions comprise a body comprising a plurality of bonded together diamond grains with interstitial regions disposed between the grains that are substantially free of the catalyst material used to initially sinter the body. A metallic substrate is attached to the body, and a braze joint is interposed between the body and the substrate. The body is metallized to include a metallic material disposed along a substrate attachment surface in contact with the braze joint, wherein the metallic material is different from the braze joint material. The metallic material may exist within a region of the body extending fully or partially into the body, and/or may exist as a layer extending away from the substrate attachment surface. The body includes a working surface characterized by empty interstitial regions or by interstitial regions filled with an infiltrant material, wherein the infiltrant material is different from the metallizing material.
Abstract:
A method of constructing an earth-boring, diamond-impregnated drill bit has a first step of coating diamond grit with tungsten to create tungsten-coated diamond particles. These coated particles are then encapsulated in a layer of carbide powder held by an organic green binder material. The encapsulated granules are then mixed along with a matrix material and placed in a mold. The matrix material includes a matrix binder and abrasive particles. The mixture is heated in the mold at atmospheric pressure to cause the matrix binder to melt and infiltrate the encapsulated granules and abrasive particles.
Abstract:
Disclosed are compositions comprising a MAX phase material having the formula Mn+1AXn, wherein M is an early transition metal, A is an A-group element, X one or both of C and N, and n=1-3, wherein the MAX phase material defines a plurality of pores; and, a metal component comprising a low melting point metal, wherein the metal occupies at least some of the pores. Also disclosed are method comprising providing a porous green body comprising a particulate material having the formula Mn+1AXn, wherein M is an early transition metal, A is an A-group element, X one or both of C and N, and n=1-3; and, infiltrating at least some of the pores of the green body with a low melting point metal, thereby providing a composite material.
Abstract:
A cast composite material is prepared by furnishing an aluminum-based matrix alloy and forming a mixture of free-flowing boron carbide particles and the aluminum-based matrix alloy in molten form which is stirred to wet the matrix alloy to the boron carbide particles and to distribute the particles throughout the volume of the melt. The molten mixture is then cast. The fluidity of the molten mixture is maintained by (a) maintaining the magnesium content of the matrix metal below about 0.2% by weight, or (b) starting with a matrix metal containing less than 0.2% by weight magnesium and adding further magnesium to the mixture a short time before casting, or (c) having at least 0.2% by weight titanium present in the mixture.
Abstract:
A method for fabricating a light metal-based nano-composite material, the method includes the steps of: (a) providing melted metal and nanoscale reinforcements; (b) ultrasonically dispersing the nanoscale reinforcements in the melted metal by means of ultrasonically mixing to achieve a mixture with the nanoscale reinforcements uniformly dispersed therein; and (c) cooling the mixture.
Abstract:
A method is described for reclaiming an Al—B4C composite scrap material. The method involves heating a liquid pool of molten aluminum while also pre-heating the scrap material. The scrap material is then added to the molten aluminum and a predetermined melt temperature is maintained in the liquid pool until all of the scrap material melts into the molten aluminum to form a resultant composite melt. Finally, the resultant composite melt is stirred to promote uniformity. A method is also described for preparing a B4C-containing aluminum cast composite products that involves preparing a mixture of free-flowing B4C particles and molten aluminum and stirring the mixture to wet the aluminum to the B4C particles. The mixture is then cast into a cast composite material and processed to form the cast composite product and Al—B4C composite scrap material. The scrap material is then reclaimed by the method described above.
Abstract:
The invention relates to a metal matrix material based on shape-memory alloy powders, to the production method thereof and to the use of same. More specifically, the invention relates to a metal matrix material which is characterised in that it is based on particles of shape-memory alloy powder, having a base of copper at a concentration of between 45 vol.-% and 70 vol.-% in relation to the total volume of the material, said powder particles being supported by a metal matrix. The invention also relates to a method of producing the aforementioned material and to the use of same for absorbing vibrations, particularly acoustic and mechanical vibrations.
Abstract:
An impregnated cutting structure that includes a plurality of first encapsulated particles, each first encapsulated particle comprising a first abrasive particle encapsulated by a first matrix material shell; and a plurality of second encapsulated particles, the second encapsulated particles comprising a second abrasive particle encapsulated by a second matrix material shell, wherein the first encapsulated particles and the second encapsulated particles have at least one property difference is disclosed.
Abstract:
A forming method wherein a billet (31, 66, 77, 87, 107, 128, 136, 144, 153, 77B, 77C) comprising a metal-based composite material (27) prepared by mixing an aluminum alloy (22) and a ceramic (15) is subjected to pressure forming to manufacture a formed article, which comprises carrying out the pressure forming by the use of different compression ratios for different portions of the formed article, wherein a compression ratio means the ratio of the height of a billet before the pressure forming to height of the billet after the pressure forming. The above forming method allows the manufacture of a formed article having different volume contents 8Vf) of the ceramic for different portions thereof.