Abstract:
Both a system and method for cleaning a low pressure separation vessel of a high pressure polyethylene polymerization plant are provided. The system includes a polytetrafluoroethylene lining that covers the interior surfaces of the vessel, and a cover mounting assembly including an annular clamp for detachably mounting a cover over the vessel. The mounting assembly includes a clamp actuator for quickly securing and releasing the cover with respect to a top rim of the vessel. The vessel is drained of liquid polyethylene and allowed to cool to ambient temperature, thus creating a frozen “skin” of polyethylene around the interior surfaces of the vessel. The clamp actuator releases the cover. The polyethylene skin is peeled off the interior sides the vessel and gathered up at the top to form a neck, thus peeling the polyethylene skin away from the polytetrafluoroethylene lining along with any degraded polymers or other impurities that have accumulated on the interior surfaces of the vessel.
Abstract:
Disclosed herein is a method of coating a catalyst support, in which a monolithic catalyst support provided therein with a plurality of longitudinally formed channels is quantitatively coated with catalyst slurry applied to post-treatment of exhaust gas, including the steps of: introducing catalyst slurry into a quantitative container whose bottom is vertically moved; moving a catalyst support to the top of a container such that the bottom of the catalyst support and top of the container are horizontally disposed each other; sealing the bottom of the catalyst support and the top of the container from the outside; moving the bottom of the container upward; and applying a vacuum to the channels of the catalyst support.
Abstract:
An assembly for High Pressure High Temperature (HPHT) synthesis of a superhard material. The assembly comprises a container comprising a first metal. A closure also comprising the first metal is sealed to the container using a sealant material. The sealant material comprises a second metal, the seal comprising a composition of the first and second metals formable below the melting point of the second metal. The container contains superhard material.
Abstract:
This disclosure relates to systems and processes for cooling polymer product mixtures manufactured at high pressure. The processes of the invention involve cooling and then subsequently reducing the pressure of the product mixture from the reactor. In the systems of the invention, a product cooler is located downstream of the high pressure reactor and upstream of a high pressure let down valve.
Abstract:
A support structure (40) for a PCD element (10) comprises a support (42) into which a PCD element (10) is locatable and a sealing element (48) for location in the support structure (40) and configured to protect a non-leached portion of a PCD element (10) during a leaching process. The support (42) is formed from or coated with a polyketone based plastics material.
Abstract:
In an outlet flow control arrangement (1) arrangeable to control a flow of material through an outlet (2) with a predetermined diameter arranged at an end of a pressurized processing container (3), the outlet flow control arrangement (1) comprises an adaptor unit (4) configured so that a cross-section of a flow into the adaptor unit (4) is reduced as compared to a cross-section of the outlet (2), to enable the adaptor unit (4) to control and center a flow of processed material out of the processing container (3) and through the outlet (2) into a discharge pipe (5).
Abstract:
A glass lined reaction tank for chemical and pharmaceutical industries and a manufacturing method thereof. One-step molding technical standards for manufacturing iron blanks of the glass lined reaction tanks are deeply developed, an overall structure of a flanged big flange of a tank body and a tank cover matching with the tank body are innovated, and nominal pressure of the big flange and the sealing performance of a tank mouth are perfectly improved. By using a new structurally-combined precise controlled internal heating type electric furnace and an intelligent temperature program control/adjustment/recording instrument, heating temperature of an overall glass lining layer on an inner wall of the tank body is more accurately controlled to be the same, and a synchronous, integral and controlled sintering core technique is realized.
Abstract:
A CVD or PVD coating device comprises a housing and a gas inlet organ secured to the housing via a retaining device, the gas inlet organ having a gas outlet surface with gas outlet openings. The retaining device is only secured at its horizontal edge to the housing so as to stabilize the retaining device with respect to deformations and temperature. The gas inlet organ is secured, at a plurality of suspension points, to the retaining device by means of a plurality of hanging elements distributed over the entire horizontal surface of the retaining device. The retaining device has mechanical stabilization elements formed by a retaining frame having vertical walls that are interconnected at vertical connection lines. An actively cooled heat shield is situated between the retaining device and the gas inlet organ.
Abstract:
A device for synthesising and studying compounds under controlled temperatures and pressures includes: a body delimiting a vacuum chamber including temperature-regulation means and vacuum-application means, and having one or more viewing windows enabling the inside of the chamber to be observed from the outside; temperature-regulation means that are intended for regulating the temperature inside the vacuum chamber; and vacuum-application means that are intended for regulating the pressure in the vacuum chamber; wherein it includes, inside the vacuum chamber, a sealed structure delimiting a sealed chamber having one or more viewing window facing said one or more windows in said body, and at least one pipe that is in fluid communication firstly with the inside of said sealed chamber and secondly with an outlet that is made in the body and provided in order to be connected to one or more sources of gas for synthesising said compound or sample.
Abstract:
A method to generate a ternary carburizing gas mixture, using a reaction of selective hydrogenation of acetylene in a stream of hydrocarbons to the form of ethylene, comprising the following steps: heating of the inside of the reactor with an inert gas to an operating temperature for a period of 20 minutes at a temperature of 300° K, passing a mixture of hydrogen and acetylene by the regiospecific catalyst, and moving out the reaction products on the outside after passing the mixture through the regiospecific catalyst, but generation is effected in a continuous mode in the operating temperature range of the regiospecific catalyst between 293° K and 398° K, preferably at a temperature of 350° K.