Abstract:
Balloon catheter includes an elongate tubular shaft having an outer tubular member having proximal and distal portions, and an inner tubular member having a distal length extending distally from the distal portion of the outer tubular member. The elongate tubular shaft has an inflation lumen and a guidewire lumen defined therein. The guidewire lumen extends along at least the distal length of inner tubular member. The balloon catheter also includes a distal end section coupled to a distal end of the inner tubular member and having a proximal end and a distal end. The balloon catheter also includes a balloon having a proximal portion sealingly coupled to the distal portion of the outer tubular member, a distal portion sealingly coupled to the distal end section, and a working length therebetween. The balloon defines an inner chamber. The proximal end of the distal end section is disposed within the inner chamber.
Abstract:
A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. A single piece sheath is placed over the scaffold immediately following crimping of the scaffold to the balloon. The single piece sheath is replaced by a two-piece sheath, which is removed prior to performing a medical procedure using the medical device.
Abstract:
The invention is directed to an expandable stent for implanting in a body lumen, such as a coronary artery, peripheral artery, or other body lumen. The invention provides for a an intravascular stent having a plurality of cylindrical rings connected by undulating links. The stent has a high degree of flexibility in the longitudinal direction, yet has adequate vessel wall coverage and radial strength sufficient to hold open an artery or other body lumen.
Abstract:
Multi-lumen catheter having a monolithic elongate tubular shaft member having a proximal end, a distal end and a longitudinal length therebetween. The tubular shaft member has an outer cross-sectional dimension that varies along the length of the tubular shaft member. The tubular shaft member has an inner core made of a first material and an outer layer made of a second material. The inner core has a first lumen and a second lumen defined therein, the first lumen having a first lumen cross-section and a length extending at least along a portion of the length of the tubular shaft member. The first lumen cross-section is substantially uniform along the length of the first lumen. The second lumen has a second lumen cross-section and a length extending along the length of tubular shaft member. The second lumen cross-section is substantially uniform along the length of the second lumen.
Abstract:
Methods of making bioabsorbable stents with grooved lumenal surfaces for enhanced re-endothelialization are disclosed. Methods include molding grooves on the lumenal surface of coated bioresorbable and durable stents. Methods further include molding grooves on lumenal surfaces of a bioresorbable tube and forming a scaffold from the tube.
Abstract:
A balloon catheter having a radiopaque coil embedded in the catheter's body corresponding to a landmark of the balloon or other location on the catheter body. The radiopaque coil can be viewed under fluoroscopy to located the balloon or other structure of the catheter. The coil can be readily inserted in the manufacturing process by inserting it between two layers that form the catheter body, and then sealing the coil inside the catheter at the desired location. This facilitates both the manufacturing process and prevents the marker from being dislodged during the manufacturing, navigation, or inflation process.
Abstract:
Methods are disclosed for conditioning a polymeric stent after sterilization, and/or after crimping and before packaging, such that the properties of the polymeric stent fall within a narrower range of values. The stent is exposed to a controlled temperature at or above ambient for a period of time after radiation sterilization and/or after crimping and before sterilization. As a result, the polymeric stent properties, particularly radial strength and number-average molecular weight of the polymer of the polymeric stent, fall within a narrower range.
Abstract:
A radiopaque nitinol stent for implantation in a body lumen is disclosed. The stent is made from a superelastic alloy such as nickel-titanium or nitinol, and includes a ternary element including tungsten. The added tungsten in specified amounts improve the radiopacity of the nitinol stent comparable to that of a stainless steel stent of the same strut pattern coated with a thin layer of gold. Furthermore, the nitinol stent has improved radiopacity yet retains its superelastic and shape memory behavior and further maintains a thin strut/wall thickness for high flexibility.