Abstract:
To provide a non-aqueous electrolyte secondary battery adapted to prevent an internal short circuit between an positive electrode and a negative electrode caused by the penetration of electrically conductive micro particles through a separator, which occurs when winding up electrodes, and manufacturing methods of an electrode used therein, whereby the non-aqueous electrolyte secondary battery having a coiled electrode assembly is formed through the multilayer winding of an positive electrode 90 having a metallic collector 76 coated with an positive electrode mixture 78 composed of an positive electrode active material that occludes and liberates lithium ions, a negative electrode 86 having a metallic collector 82 coated with a negative electrode mixture 84, composed of a negative electrode active material that occludes and liberates lithium ions, and a separator 72 interposed between the positive electrode and the negative electrode, wherein the positive electrode 90 has an insulating layer 100 formed by means of the dried coating method, the heat seal tape method, or the hot melt coating method on a portion of the metallic collector 76 which is uncoated with the positive electrode mixture 78 and opposed to the negative electrode 86 coated with the negative electrode mixture 84, through the separator 72.
Abstract:
A semiconductor test circuit including an input terminal, a controller, a setting circuit, a command generator, a transmission path switching circuit and a comparator. The input terminal receives serial data including a command code and control data. The controller receives a control signal from the input terminal and outputs an internal control signal. The setting circuit receives serial data from the input terminal and outputs it to the command generator in response to the internal control signal. The command generator then generates an interface signal based on this serial data. The switching circuit receives the signal from one of its ports and outputs the received signal to another port in response to the internal control signal and the command code, and the comparator compares the interface signal received from the command generator with the signal received from the switching circuit.
Abstract:
A self-refresh timer circuit for generating a timer period for controlling self-refresh operation of a semiconductor memory device comprising: a temperature-dependent voltage source for outputting a voltage having a temperature dependency based on a diode characteristic; a control current generating circuit for applying an output voltage of the temperature-dependent voltage source to a temperature detecting device having a diode characteristic and for generating a control current having a magnitude in proportion to a current flowing through the temperature detecting device; and a timer period generating circuit for generating a timer period in inverse proportion to the magnitude of the control current.
Abstract:
An automatic transmission includes a pressure adjusting unit that controls hydraulic pressure supplied to a transmission mechanism by the operation of a solenoid valve. A housing has a heat radiating portion for radiating heat to the outside and houses the pressure adjusting unit. A first connector is so arranged as to pass through the housing and has a control circuit unit electrically connected to the solenoid valve of the pressure adjusting unit. A second connector is electrically connected to an engine control unit outside the housing and engages with the first connector and the heat radiating portion. The second connector is electrically connected to the control circuit unit and presses the first connector onto the heat radiating portion.
Abstract:
A memory control circuit includes a control register having a memory capacity of m bits or smaller for setting information necessary for controlling the memory, input pins to which m-bit test data is input in parallel, an extension circuit for extending the data input to the input pins to n-bit data, and a first selection section for selectively inputting n-bit data supplied from the extension circuit or a CPU based on a mode signal to switch between a test mode and a normal mode. The memory control circuit further includes a degeneration circuit for compressing n-bit data to be output in parallel to the CPU to m-bit data, a second selection section for selecting m-bit data compressed by the degeneration circuit or lower m-bit data in n-bit data to be output to the CPU based on a switch signal, and output pins for outputting the m-bit data selected by the second selection section in parallel.
Abstract:
A lens tilt adjusting mechanism includes a lens frame to which at least one lens element is fixed, a lens frame holder which holds the lens frame, axially-opposed radial surfaces formed on the lens frame and the lens frame holder, respectively, a biasing device for biasing the lens frame and the lens frame holder in directions to make the axially-opposed radial surfaces contact each other, and a protrusion formed on one of the axially-opposed radial surfaces and a recess formed on the other of the axially-opposed radial surfaces. The axially-opposed radial surfaces are in intimate contact with each other when the protrusion and the recess are engaged with each other, and the lens frame tilts relative to the lens frame holder when the protrusion is disengaged from the recess so that the protrusion is in contact with the other of the axially-opposed radial surfaces.
Abstract:
A zoom lens barrel includes a linear guide ring; a moving frame having a male helicoid; a rotatable ring coupled to the linear guide ring; a female helicoid formed on the rotatable ring, and engaged with the male helicoid; a switching ring coupled to the rotatable ring; a switching member; and a switching-member moving groove including a first inclined section, a switching section, a second inclined section and an assembling section. The lead angle of the first inclined section is the same but has an opposite inclination to that of the female helicoid. The follower projection is inserted in the first inclined section. The switching section extends parallel to the optical axis. The second inclined section extends parallel to the first inclined section. The assembling section extends rearwards from a front end of the second inclined section to be parallel to the optical axis.
Abstract:
A reset circuit, which generates a reset signal for initializing an internal circuit of an integrated circuit device having an auto-loading function, includes a first register which stores a predetermined expected value data; a second register holding data which was auto-loaded; and a data comparison circuit which performs a comparison between the data held in the second register and the expected value data stored in the first register, and generates the reset signal based on a result of the comparison.
Abstract:
The present invention is directed to a manufacturing method for laminated electronic components which provides small cutting width and high degree of size precision and prevents defect occurrence after the baking process resulting from stress strain. In the manufacturing method, a laser beam 92 is applied onto a laminated green sheet 21 to cut it into laminated green chips 31 having a rectangular solid with a side of 0.6 mm or less and a side of 0.3 mm or less in dimensions measured after the baking process.
Abstract:
A method of producing a plated material having both high heat-resistance and good insertability/extractability. An undercoating of any one of metals belonging to group 4, group 5, group 6, group 7, group 8, group 9 or group 10 of the periodic table or an alloy containing any one of those metals as a main component, an intermediate coating of Cu or a Cu alloy, and a top-coating of Sn or an Sn alloy are formed on a surface of an electrically conductive base in this order. Then, for example by heat treatment, the intermediate coating is made to disappear and a layer virtually made of an Sn—Cu intermetallic compound is formed.