Abstract:
Methods for patterning a metal over a substrate and devices formed using the methods are disclosed. A patterned die having at least one raised portion and having a metal layer over the die is pressed onto a thin metal film over a substrate, such that the metal layer over the raised portion of the patterned die contacts portions of the thin metal film. Pressure is then applied such that the metal layer and the thin metal film cold-weld to one another. The patterned die is removed, such that the portions of the metal layer cold-welded to the thin metal film break away from the die and remain cold-welded to the thin metal film over the substrate, in substantially the same pattern as the patterned die.
Abstract:
Phosphorescent OLEDs having a double doped-layer structure wherein the OLEDs include a hole transporting layer (HTL) having a phosphorescent material doped therein, and an electron transporting layer (ETL) having the same phosphorescent material doped therein. Typically, these phosphorescent OLEDs have an anode, a first HTL over the anode, a second HTL that is doped with a phosphorescent material over the first HTL, a first ETL that is doped with a phosphorescent material over the second HTL, a second ETL over the first ETL, and a cathode over the second ETL. These phosphorescent OLEDs preferably include blue phosphorescent OLEDs with high efficiency levels.
Abstract:
A modulated laser device comprising two or more vertically stacked asymmetric waveguides is provided. The laser device comprises a first waveguide having a gain region formed therein for amplifying at least a first mode of light, and a second waveguide vertically coupled to the first waveguide and having a modulator formed therein for modulating a second mode of light having an effective index of refraction different from the first mode. Light propagating in the first waveguide is transferred into the second waveguide via a lateral taper in the first waveguide. The laser device may further comprise a third waveguide positioned between the first and second waveguide for providing isolation between the gain region and modulator. Distributed bragg reflector (DBR) and distributed feedback (DFB) laser designs may be employed in the device.
Abstract:
Organic light emitting devices are disclosed which include a heterostructure for producing electroluminescence wherein the heterostructure includes a non-metallic cathode. As a representative embodiment of the present invention, the heterostructure for producing electroluminescence includes in order, a non-metallic cathode layer (1), an electron injecting interface layer (6), an electron transporting layer (2), a hole transporting layer (3), and an anode layer (4); wherein the non-metallic cathode layer (1) includes an indium-tin oxide layer in contact with a copper phthalocyanine layer which functions as the electron injecting interface layer (6).
Abstract:
Organic photosensitive optoelectronic devices (“OPODs”) which include an exciton blocking layer to enhance device efficiency. Single heterostructure, stacked and wave-guide type embodiments. Photodetector OPODs having multilayer structures and an exciton blocking layer. Guidelines for selection of exciton blocking layers are provided.
Abstract:
A novel class of low reflectivity, high transparency, non-metallic cathodes useful for a wide range of electrically active, transparent organic devices are disclosed. As a representative embodiment, the highly transparent non-metallic cathode of an OLED employs a thin film of copper phthalocyanine (CuPc) capped with a film of low-power, radio-frequency sputtered indium-tin-oxide (ITO). The CuPc prevents damage to the underlying organic layers during the ITO sputtering process. A theory of the invention is presented which suggests that damage-induced states at the non-metallic cathode/organic film interface are responsible for the efficient electron injection properties of the cathode. Due to the low reflectivity of the non-metallic cathode, a non-antireflection-coated, non-metallic-cathode-containing TOLED is disclosed that is 85% transmissive in the visible, emitting nearly identical amounts of light in the forward and back-scattered directions. The performance of the non-metallic-cathode-containing TOLED is found to be comparable to that of TOLEDs employing a more reflective and absorptive cathode consisting of a semi-transparent thin film of Mg:Ag capped with ITO.
Abstract:
The present invention is directed to organic light emitting devices comprising a heterostructure for producing electroluminescence having a hole transporting layer with a glass structure. The hole transporting layer comprises a compound having a symmetric molecular structure. The end groups of the symmetric molecule are hole transporting amine moieties having an unsaturated linkage between two arenes.
Abstract:
Organic light emitting devices are disclosed which are comprised of a heterostructure for producing electroluminescence wherein the heterostructure is comprised of an emissive layer containing a phosphorescent dopant compound. For example, the phosphorescent dopant compound may be comprised of platinum octaethylporphine (PtOEP), which is a compound having the chemical structure with the formula:
Abstract:
A method for tuning the wavelength of light emitted by an organic light emitting device. An emissive dopant molecule is selected, adapted to emit light when present as a dopant in an emissive layer of the organic light emitting device. The wavelength of light emitted by said emissive dopant molecule depends on the local dipole moment of the emissive layer. The local dipole moment of the emissive layer that would result in said emissive dopant molecule emitting a desired wavelength of light is determined, and an emissive layer is fabricated, doped with the emissive dopant molecule and having the local dipole moment that results in the emissive dopant molecule emitting the desired wavelength of light.
Abstract:
A stacked organic photosensitive optoelectronic device optimized to enhance desired characteristics such as external quantum efficiency and voltage is described. The photosensitive optoelectronic device has a plurality of photosensitive optoelectronic subcells electrically configured in series. The substrate may be the bottom electrode or there may be a bottom electrode distinct from the substrate. Each subcell comprises one or more organic photoconductive layers between electrode layers or charge transfer layers. In one embodiment the top electrode is transparent. In other embodiments two or more electrodes are transparent. In other embodiments photosensitive optoelectronic devices with multilayer photoconductive structures and photosensitive optoelectronic devices with a reflective layer or a reflective substrate are disclosed.