Abstract:
An object of one embodiment of the present invention is to propose a memory device in which a period in which data is held is ensured and memory capacity per unit area can be increased. In the memory device of one embodiment of the present invention, bit lines are divided into groups, and word lines are also divided into groups. The word lines assigned to one group are connected to the memory cell connected to the bit lines assigned to the one group. Further, the driving of each group of bit lines is controlled by a dedicated bit line driver circuit of a plurality of bit line driver circuits. In addition, cell arrays are formed on a driver circuit including the above plurality of bit line driver circuits and a word line driver circuit. The driver circuit and the cell arrays overlap each other.
Abstract:
When a pixel portion and a driver circuit are formed over one substrate and a counter electrode is formed over an entire surface of a counter substrate, the driver circuit may be adversely affected by an optimized voltage of the counter electrode. A semiconductor device according to the present invention has a structure in which: a liquid crystal layer is provided between a pair of substrates; one of the substrates is provided with a pixel electrode and a driver circuit; the other of the substrates is a counter substrate which is provided with two counter electrode layers in different potentials; and one of the counter electrode layers overlaps with the pixel electrode with the liquid crystal layer therebetween and the other of the counter electrode layers overlaps with the driver circuit with the liquid crystal layer therebetween. An oxide semiconductor layer is used for the driver circuit.
Abstract:
Objects are to provide a display device the power consumption of which is reduced, to provide a self-luminous display device the power consumption of which is reduced and which is capable of long-term use in a dark place. A circuit is formed using a thin film transistor in which a highly-purified oxide semiconductor is used and a pixel can keep a certain state (a state in which a video signal has been written). As a result, even in the case of displaying a still image, stable operation is easily performed. In addition, an operation interval of a driver circuit can be extended, which results in a reduction in power consumption of a display device. Moreover, a light-storing material is used in a pixel portion of a self-luminous display device to store light, whereby the display device can be used in a dark place for a long time.
Abstract:
One embodiment of the present invention provides a highly reliably display device in which a high mobility is achieved in an oxide semiconductor. A first oxide component is formed over a base component. Crystal growth proceeds from a surface toward an inside of the first oxide component by a first heat treatment, so that a first oxide crystal component is formed in contact with at least part of the base component. A second oxide component is formed over the first oxide crystal component. Crystal growth is performed by a second heat treatment using the first oxide crystal component as a seed, so that a second oxide crystal component is formed. Thus, a stacked oxide material is formed. A transistor with a high mobility is formed using the stacked oxide material and a driver circuit is formed using the transistor.
Abstract:
In a liquid crystal display device including a plurality of pixels in a display portion and configured to performed display in a plurality of frame periods, each of the frame periods includes a writing period and a holding period, and after an image signal is input to each of the plurality of pixels in the writing period, a transistor included in each of the plurality of pixels is turned off and the image signal is held for at least 30 seconds in the holding period. The pixel includes a semiconductor layer including an oxide semiconductor layer, and the oxide semiconductor layer has a carrier concentration of less than 1×1014/cm3.
Abstract translation:在包括显示部分中的多个像素并且被配置为在多个帧周期中进行显示的液晶显示装置中,每个帧周期包括写入周期和保持周期,并且在将图像信号输入到每个 在所述写入周期中的所述多个像素中,包括在所述多个像素中的每一个中的晶体管被截止,并且所述图像信号在所述保持周期中保持至少30秒。 像素包括具有氧化物半导体层的半导体层,氧化物半导体层的载流子浓度小于1×10 14 / cm 3。
Abstract:
A semiconductor device, in which an integrated circuit portion and an antenna are easily connected, can surely transmit and receive a signal to and from a communication device. The integrated circuit portion is formed of a thin film transistor over a surface of a substrate so that the area occupied by the integrated circuit portion is increased. The antenna is provided over the integrated circuit portion, and the thin film transistor and the antenna are connected. Further, the area over the substrate occupied by the integrated circuit portion is 0.5 to 1 times as large as the area of the surface of the substrate. Thus, the size of the integrated circuit portion can be close to the desired size of the antenna, so that the integrated circuit portion and the antenna are easily connected and the semiconductor device can surely transmit and receive a signal to and from the communication device.
Abstract:
There are provided a driving circuit of a semiconductor display device which can obtain an excellent picture without picture blur (display unevenness) and with high fineness/high resolution, and the semiconductor display device. A buffer circuit used in the driving circuit of the semiconductor display device is constituted by a plurality of TFTs each having a small channel width, and a plurality of such buffer circuits are connected in parallel with each other.
Abstract:
Provided are a driver circuit which suppresses damage of a semiconductor element due to ESD in a manufacturing process, a method of manufacturing the driver circuit. Further provided are a driver circuit provided with a protection circuit with low leakage current, and a method of manufacturing the driver circuit. By providing a protection circuit in a driver circuit to be electrically connected to a semiconductor element in the driver circuit, and by forming, at the same time, a transistor which serves as the semiconductor element in the driver circuit and a transistor included in the protection circuit in the driver circuit, damage of the semiconductor element due to ESD is suppressed in the process of manufacturing the driver circuit. Further, by using an oxide semiconductor film for the transistor included in the protection circuit in the driver circuit, leakage current in the protection circuit is reduced.
Abstract:
To provide a novel display device without deterioration of display quality, the display device includes a display panel including a pixel portion that displays still images at a frame frequency of 30 Hz or less, a temperature sensing unit that senses the temperature of the display panel, a memory device that stores a correction table containing correction data, and a control circuit to which correction data selected from the correction table is input in accordance with an output of the temperature sensing unit. The pixel portion includes a plurality of pixels. Each of the pixels includes a transistor, a display element, and a capacitor. The control circuit outputs a voltage based on the correction data input to the control circuit, to the capacitor included in each of the pixels.
Abstract:
A liquid crystal material is prevented from being degraded by a voltage to control the shift of the threshold voltage which is applied to a back gate on the same conductive film as a pixel electrode. A liquid crystal display device includes a pixel circuit including a pixel electrode which applies an electric field to a liquid crystal layer; and a driver circuit including a transistor including a first gate and a second gate with a semiconductor film interposed therebetween. The transistor overlaps with the liquid crystal layer. A signal for controlling on/off of the transistor is input to the first gate. A signal for applying a first voltage is input to the second gate in a gate line selection period. A signal for alternately applying the first voltage and a second voltage is input to the second gate in a vertical retrace period.