Abstract:
A MOS transistor having a source and drain extension that are less than 40 nanometers in thickness to minimize the short channel effect. A gate includes a high-K dielectric spacer layer to create depletion regions in the substrate which form the drain and source extensions.
Abstract:
A field effect transistor with scaled down dimensions is fabricated using a removable spacer having a substantially uniform width along the sidewalls of the gate of the field effect transistor during a differential RTA (Rapid Thermal Anneal) process. The removable spacer is formed on the sidewalls of the gate structure using the gate material on the sidewalls of the gate structure. Because the removable spacer has a width that is substantially uniform on the sidewalls of the gate of the MOSFET, the removable spacer may be readily etched using an dry etch process without adversely affecting other structures of the MOSFET. Exposed portions of the layer of gate dielectric are etched to form exposed portions of the active device area. A first dopant is then implanted into the exposed portions of the active device area to form a drain contact junction and a source contact junction of the field effect transistor. The first dopant is activated in the drain contact junction and the source contact junction using a first RTA (Rapid Thermal Anneal) process at a first temperature. The removable spacer is then etched from the sidewalls of the gate structure to form exposed extension implant areas in the active device area. A second dopant is then implanted into the exposed extension implant areas to form a drain extension implant and a source extension implant. The second dopant is then activated in the drain extension implant and the source extension implant using a second RTA (Rapid Thermal Anneal) process at a second temperature that is relatively lower than the first temperature of the first RTA process to preserve the shallow depth of the drain and source extension implants.
Abstract:
A method of fabricating an integrated circuit with ultra-shallow source/drain junctions utilizes a solid-phase impurity source. The solid-phase impurity source can be a doped silicon dioxide layer approximately 300 nm thick. The structure is thermally annealed to drive dopants from the solid-phase impurity source into the source and drain regions. The dopants from the impurity source provide ultra-shallow source and drain extensions. The process can be utilized for P-channel or N-channel metal oxide field semiconductor effect transistors (MOSFETS).
Abstract:
A method of fabricating an integrated circuit with less susceptibility to gate-edge fringing field effect is disclosed. The transistor includes a low-k dielectric spacer and a high-k gate dielectric. The high-k gate dielectric can be tantalum pentaoxide or titanium dioxide. The process can be utilized for P-channel or N-channel metal oxide field semiconductor effect transistors (MOSFETs).
Abstract:
A method for making a ULSI MOSFET chip includes forming transistor gates on a substrate. The gates are formed by depositing a polysilicon layer on the substrate, implanting germanium into the polysilicon layer at a comparatively low dose, and then oxidizing the doped polysilicon layer. Under the influence of the oxidation, the germanium is repelled from an upper sacrificial region of the polysilicon layer into a lower gate region of the polysilicon layer, thereby increasing the germanium concentration in the lower gate region. The sacrificial region is then etched away and an undoped polysilicon film deposited on the gate region. Subsequently, the gate region with undoped polysilicon film is patterned to establish a MOSFET gate, with the substrate then being appropriately processed to establish MOSFET source/drain regions.
Abstract:
An ultra-large-scale integrated (ULSI) circuit includes MOSFETs which have different threshold voltages and yet have the same channel characteristics. The MOSFETs include gate structures with a polysilicon material. The polysilicon material is implanted with lower concentrations of germanium where lower threshold voltage MOSFETs are required. Over a range of 0-60% concentration of germanium, the threshold voltage can be varied by roughly 240 mV. A damascene process can be utilized to fabricate the MOSFETs.
Abstract:
A method of forming a dielectric gate insulator in a transistor is disclosed herein. The method includes depositing a layer of material over a semiconductor structure; depositing a covering layer over the layer of material; selectively creating an aperture in the covering layer, wherein an area of the layer of material is exposed; providing thermal oxidation to the exposed area of the layer of material to produce an oxidized area; providing a gate over the oxidized area; and removing the covering layer.
Abstract:
A thin filmed fully-depleted silicon-on-insulator (SOI) metal oxide semiconductor field defect transistor (MOSFET) utilizes a local insulation structure. The local insulative structure includes a buried silicon dioxide region under the channel region. The MOSFET body thickness is very small and yet silicon available outside of the channel region and buried silicon dioxide region is available for sufficient depths of silicide in the source and drain regions. The buried silicon dioxide region can be formed by a trench isolation technique or a LOCOS technique.
Abstract:
A method of fabricating an integrated circuit with ultra-shallow source/drain junctions utilizes a dummy or sacrificial gate structure. Dopants are provided through the openings associated with sacrificial spacers to form the source and drain extensions. The openings can be filled with spacers The process can be utilized for P-channel or N-channel metal oxide field semiconductor effect transistors (MOSFETS).
Abstract:
A punch-through diode transient suppression device has a base region of varying doping concentration to improve leakage and clamping characteristics. The punch-through diode includes a first region comprising an n+ region, a second region comprising a p- region abutting the first region, a third region comprising a p+ region abutting the second region, and a fourth region comprising an n+ region abutting the third region. The peak dopant concentration of the n+ layers should be about 1.5E18 cm.sup.-3, the peak dopant concentration of the p+ layer should be between about 1 to about 5 times the peak concentration of the n+ layer, and the dopant concentration of the p- layer should be between about 0.5E14 cm.sup.-3 and about 1.0E17 cm.sup.-3. The junction depth of the fourth (n+) region should be greater than about 0.3 um. The thickness of the third (p+) region should be between about 0.3 um and about 2.0 um, and the thickness of the second (p-) region should be between about 0.5 um and about 5.0 um.