Abstract:
The invention relates a cell device and a cell string for high density flash memory. The cell string includes a plurality of cell devices and switching devices connected to ends of the plurality of cell devices. The cell device includes a semiconductor substrate, an insulating film, a charge storage node composed of nano-sized dots, a control insulating film and a control electrode which are sequentially formed on the semiconductor substrate, without source/drain regions. In the cell string, the silicon substrate enables easy formation of an inversion layer acting as the source/drain regions. The switching device does not include a source or drain region at a side connected to an adjacent cell device but includes a source or drain region at the side opposite to the side connected to the adjacent cell device. The invention improves miniaturizability and performance of cell devices for NAND flash memory, and induces an inversion layer by using a fringing electric field generated from the control electrode and the charge storage node, thus allowing for electrical connection between cells or between cell strings.
Abstract:
Integrated circuit devices include a semiconductor substrate having a first doped region and a second doped region having a different doping type than the first doped region. A gate electrode structure on the semiconductor substrate extends between the first and second doped regions and has a gate insulation layer of a first high dielectric constant material in the first doped region and of a second high dielectric constant material, different from the first high dielectric constant material, in the second doped region. A gate electrode is on the gate insulation layer.
Abstract:
The present invention relates to a flash memory cell string. The flash memory cell string includes a plurality of cell devices and switching devices connected to ends of the cell devices. Each of the cell devices includes a semiconductor substrate, and a transmissive insulating layer, a charge storage node, a control insulating layer and a control electrode sequentially formed on the semiconductor substrate. In the flash memory cell string, a buried insulating layer is provided on the semiconductor substrate between the cell device and an adjacent cell device, thus enabling an inversion layer, which performs the functions of source/drain, to be easily formed.According to the present invention, the reduction characteristics and performance of the cell devices of NAND flash memory are improved, and the inversion layer of a channel is induced through fringing electric fields from the control electrode and the charge storage node if necessary.
Abstract:
A multi-layer ceramic capacitor including: a ceramic sintered body having cover layers provided on upper and lower surfaces thereof as outermost layers and a plurality of ceramic layers disposed between the cover layers; first and second internal electrodes formed on the ceramic layers, the first and second internal electrodes stacked to interpose one of the ceramic layers; first and second external electrodes formed on opposing sides of the ceramic sintered body to connect to the first and second internal electrodes, respectively; and anti-oxidant electrode layers formed between the cover layers and adjacent ones of the ceramic layers, respectively, the anti-oxidant electrode layers arranged not to affect capacitance.
Abstract:
A semiconductor chip package having a molding layer is provided. The semiconductor chip package includes a semiconductor chip, a plurality of external connection terminals, and the molding layer. The semiconductor chip comprises a backside surface, side surfaces, and an active surface having a plurality of chip pads disposed thereon. The molding layer substantially covers the backside surface, the side surfaces, and the active surface of the semiconductor chip and defines at least one opening exposing a portion of the backside surface of the semiconductor chip. A multi-chip package including the semiconductor chip package and a method of manufacturing the semiconductor chip package are also provided.
Abstract:
A semiconductor device and related methods of manufacture are disclosed in which dual work function metal gate electrodes are formed from a single metal layer by doping the metal layer with carbon and/or fluorine.
Abstract:
Provided are a semiconductor chip package, a semiconductor package, and a method of fabricating the same. In some embodiments, the semiconductor chip packages includes a semiconductor chip including an active surface, a rear surface, and side surfaces, bump solder balls provided on bonding pads formed on the active surface, and a molding layer provided to cover the active surface and expose portions of the bump solder balls. The molding layer between adjacent bump solder balls may have a meniscus concave surface, where a height from the active surface to an edge of the meniscus concave surface contacting the bump solder ball is about a 1/7 length of the maximum diameter of a respective bump solder ball at below or above a section of the bump solder ball having the maximum diameter.
Abstract:
Provided are a semiconductor package having molded balls on a bottom surface of a PCB and a method of manufacturing the semiconductor package. The semiconductor package includes: a semiconductor chip mounting member comprising circuit patterns on a first surface, an insulating layer defining openings exposing at least portions of the circuit patterns, and external contact terminals arranged on the portions of circuit patterns exposed by the openings; a semiconductor chip formed on a second surface of the semiconductor chip mounting member and electrically connected to the semiconductor chip mounting member; a first sealing portion coating the second surface of the semiconductor chip mounting member and the semiconductor chip; and a second sealing portion arranged on the insulating layer and the external contact terminals such that at least portions of the external contact terminals are exposed.
Abstract:
In a method of manufacturing a semiconductor device, a gate insulation layer is formed on a substrate including a first channel of a first conductive type and a second channel of a second conductive type different from the first conductive type. A first conductive layer including a first metal is formed on the gate insulation layer, and a second conductive layer including a second metal different from the first metal is formed on the first conductive layer formed over the second channel. The second conductive layer is partially removed by a wet etching process to form a second conductive layer pattern over the second channel.
Abstract:
A photonic crystal light emitting device including: a light emitting diode (LED) light emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer interposed between the first and second conductive semiconductor layers; and a first photon-recycling light emitting layer formed on one surface of the first conductive semiconductor layer, opposite to the active layer, wherein the first photon-recycling light emitting layer absorbs a primary light emitted from the LED light emitting structure and emits a light having a different wavelength from that of the primary light, and a photonic crystal structure is formed on an entire thickness of the first photon-recycling light emitting layer.