Abstract:
A low-chromium hot-work tool steel consisting of (in wt-%): C 0.08-0.40, N 0.015-0.30, C+N 0.30-0.50, Cr 1-4, Mo 1.5-3, V 0.8-1.3, Mn 0.5-2, Si 0.1-0.5, optionally Ni
Abstract:
Provided are a method for producing powder for a magnet, and methods for producing a powder compact, a rare-earth-iron-based alloy material, and a rare-earth-iron-nitrogen-based alloy material. Magnetic particles constituting the powder each have a texture in which grains of a phase of a hydride of a rare-earth element are dispersed in a phase of an iron-containing material. The uniform presence of the phase of the iron-containing material in each magnetic particle results in powder having excellent formability, thereby providing a powder compact having high relative density. The powder is produced by heat-treating rare-earth-iron-based alloy powder in a hydrogen atmosphere to separate the rare-earth element and the iron-containing material and then forming a hydride of the rare-earth element. The powder is compacted. The powder compact is heat-treated in vacuum to form a rare-earth-iron-based alloy material. The rare-earth-iron-based alloy material is heat-treated in a nitrogen atmosphere to form a rare-earth-iron-nitrogen-based alloy material.
Abstract:
A powder filling method includes introducing a tube into a can so that the lower end of the tube is near the bottom of the can. The powder in the can is introduced through the tube. The proximity of the lower end of the tube to the powder is controlled by retracting the tube as the powder fills the can.
Abstract:
Selective laser solidification apparatus is described that includes a powder bed onto which a powder layer can be deposited and a gas flow unit for passing a flow of gas over the powder bed along a predefined gas flow direction. A laser scanning unit is provided for scanning a laser beam over the powder layer to selectively solidify at least part of the powder layer to form a required pattern. The required pattern is formed from a plurality of stripes or stripe segments that are formed by advancing the laser beam along the stripe or stripe segment in a stripe formation direction. The stripe formation direction is arranged so that it always at least partially opposes the predefined gas flow direction. A corresponding method is also described.
Abstract:
A method for preparing vanadium-nitrogen alloy, the method including: 1) mixing and pressing a vanadium-containing compound, an agglutinant, and a carbon-premixed reducing agent to yield a spherical raw material, and air drying the spherical raw material; and 2) mixing the spherical raw material with a granular carbonaceous reducing agent to yield a mixture, and continually feeding the mixture into a shaft kiln of a medium frequency induction furnace, purging the shaft kiln with pure nitrogen and maintaining a furnace pressure at between 0.01 and 0.03 mPa, drying the mixture at a temperature of between 100 and 600° C., carbonizing and nitriding at a temperature of between 900 and 1350° C., cooling the resulting product to less than 100° C., and discharging the product.
Abstract:
A process for the removal of adsorbed water from the surface of powder materials includes the step of flowing a heated gas over the powder. The temperature of the gas is below the cracking temperature of the water. The gas is inert with the powder. An ultraviolet light is applied to the powder at a wavelength that will pass through the gas, heat the adsorbed water and desorb it, and reflect from the powder. The ultraviolet light has a wavelength between 10-185 nm. Water is removed from the powder with the flowing gas.
Abstract:
Hard particles are incorporated as a starting material in a sintered alloy. The hard particles contain 20 to 60 mass % Mo and 3 to 15 mass % Mn, the balance being Fe and unavoidable impurities.
Abstract:
Embodiments of the invention relate to methods of forming polycrystalline diamond compacts (“PDCs”), wherein the PDC includes a polycrystalline diamond (“PCD”) table in which at least one Group VIII metal is at least partially alloyed with phosphorus and/or at least one other alloying element to improve the thermal stability of the PCD table. The disclosed PDCs may be used in a variety of applications, such as rotary drill bits, machining equipment, and other articles and apparatuses.
Abstract:
A method for increasing the resolution when forming a three-dimensional article through successive fusion of parts of a powder bed, said method comprising providing a vacuum chamber, providing an electron gun, providing a first powder layer on a work table inside said vacuum chamber, directing an electron beam from said electron gun over said work table causing the powder layer to fuse in selected locations to form a first cross section of said three-dimensional article, providing a second powder layer on said work table, directing the electron beam over said work table causing said second powder layer to fuse in selected locations to form a second cross section of said three-dimensional article, reducing the pressure in the vacuum chamber from a first pressure level to a second pressure level between the providing of said first powder layer and said second powder layer.
Abstract:
Provided are a powder for a magnet, which provides a rare-earth magnet having excellent magnet properties and which has excellent formability, a method for producing the powder for a magnet, a powder compact, a rare-earth-iron-based alloy material, and a rare-earth-iron-nitrogen-based alloy material which are used as materials for the magnet, and methods for producing the powder compact and these alloy materials. Magnetic particles 1 constituting the powder for a magnet each have a texture in which grains of a phase 3 of a hydride of a rare-earth element are dispersed in a phase 2 of an iron-containing material, such as Fe. The uniform presence of the phase 2 of the iron-containing material in each magnetic particle 1 results in the powder having excellent formability, thereby providing a powder compact 4 having a high relative density. The powder for a magnet is produced by heat-treating a rare-earth-iron-based alloy powder in a hydrogen atmosphere to separate the rare-earth element and the iron-containing material from each other and then forming a hydride of the rare-earth element. The powder for a magnet is subjected to compacting to form the powder compact 4. The powder compact 4 is subjected to heat treatment in vacuum to form a rare-earth-iron-based alloy material 5. The rare-earth-iron-based alloy material 5 is subjected to heat treatment in a nitrogen atmosphere to form a rare-earth-iron-nitrogen-based alloy material 6.