Abstract:
The invention concerns a method for making a vertical Schottky diode on a highly doped N-type silicon carbide substrate (1), comprising steps which consist in forming an N-type lightly doped epitaxial layer (2); etching out a peripheral trench at the active zone of the diode; forming a type P doped epitaxial layer; carrying out a planarization process so that a ring (6) of the P type epitaxial layer remains in the trench; forming an insulating layer (3) on the outer periphery of the component, said insulating layer partly covering said ring; and depositing a metal (4) capable of forming a Schottky barrier with the N type epitaxial layer.
Abstract:
A semiconductor component, semiconductor wafer and semiconductor package include an integrated-circuit chip having, on a front face, an optical sensor and electrical connection pads between the edge of this face and this optical sensor. A protective patch made of a transparent material is placed in front of the optical sensor but does not cover the said optical connection pads. The said protective patch is fixed to the front face of the said chip by a bead of an adhesive extending annularly between, and at a certain distance from, the edge of the said optical sensor and of the electrical connection pads. At least one of the faces of the patch is covered with a protective layer of a material that filters out infrared light rays.
Abstract:
A process is provided for fabricating an optical semiconductor package. According to the process, a first semiconductor component is fixed to a rear face of an electrical connection support plate, and this first component is electrically connected to the support plate. An encapsulation block for the first component is molded on the rear face of the support plate. A second semiconductor component, a front face of which has an optical sensor, is fixed to one face of the first component, and this second component is electrically connected to the support plate. The second component is encapsulated on the front face of the support plate. Also provided is an optical semiconductor package.
Abstract:
A frequency shift of a carrier frequency of an input signal is estimated with a frequency estimator in order to obtain an estimate value. Then, the estimate of the frequency shift is refined, and the carrier frequency is corrected in consequence, with a phase-locked loop that is initialized with the estimate value. The phase-locked loop has a locking frequency range that is narrower than a locking frequency range of the frequency estimator.
Abstract:
A vertical SCR switch to be controlled by a high-frequency signal having at least four main alternated layers. The switch includes a gate terminal and a gate reference terminal connected via integrated capacitors to corresponding areas. In the case of a thyristor, having on its front surface side a main P-type semiconductor area formed in an N-type gate semiconductor area, a first portion of the main area being connected to one of the main areas, a second portion of the main area is connected to one of the control terminals via a first integrated capacitor, and a portion of the gate area being connected to the other of the control terminals via a second integrated capacitor.
Abstract:
A differential mixer including at least two input/output stages, each stage including two identical branches, each branch of one of the two stages including at least two bipolar transistors the bases of which define a first pair of input/output terminals of the stage and are connected to a same D.C. current source individually by a respective isolating resistor; the collectors of which define a second pair of input/output terminals of the stage which forms a pair of input/output terminals of another stage of the mixer; and the emitters of which are individually connected to a low voltage reference line by a respective degenerative impedance.
Abstract:
A memory element in an integrated circuit includes several levels of conductive materials separated by insulating levels, each of which is capable of being crossed by conductive vias of an intercalary via level, and at least two connection rails, including several assemblies of successive interconnected areas and vias, a first assembly being formed of a zigzag running from a first metal level to a last metal level and back to the first metal level between a first end and a second end, each of the other assemblies being connected to one of the connection rails, the first end of the zigzag being connected to an initial assembly among the other assemblies.
Abstract:
A terminal for generating a high-frequency electromagnetic field by an oscillating circuit, adapted to cooperating with at least one transponder when the transponder enters this field, and a method for establishing a communication between the devices, including circuitry for regulating the signal phase in the oscillating circuit with respect to a reference value and circuitry for evaluating, based on a measurement of the current in the oscillating circuit, the minimum number of transponders present in the field.
Abstract:
Process for processing an executable embedded software code, said process comprising: reading an executable embedded code for one predetermined processor; extracting code sections from said executable embedded code; reading a file containing a description of a set of instructions for said predetermined processor, based on the concepts of TOKEN, FIELDS, ATTRIBUTES and CONSTRUCTORS of the SLED language, enriched with an additional CLASS definition grouping different instruction under a same label; and using said description in order to derive from said TOKEN, FIELDS, ATTRIBUTES, CONSTRUCTORS and CLASS an internal representation taking the form of a decision tree.
Abstract:
The cells of the stacked type each comprise a MOS transistor formed in an active region of a substrate of semiconductor material and a capacitor formed above the active region; each MOS transistor has a first and a second conductive region and a control electrode and each capacitor has a first and a second plate separated by a dielectric region material, for example, ferroelectric one. The first conductive region of each MOS transistor is connected to the first plate of a respective capacitor, the second conductive region of each MOS transistor is connected to a respective bit line, the control electrode of each MOS transistor is connected to a respective word line, the second plate of each capacitor is connected to a respective plate line. The plate lines run perpendicular to the bit line and parallel to the word lines. At least two cells adjacent in a parallel direction to the bit lines share the same dielectric region material and the same plate line. In this way, the manufacturing process is not critical and the size of the cells is minimal.