Abstract:
A flip-chip fan-out wafer level package for package-on-package applications includes a semiconductor die with solder bumps on an upper surface in a flip chip configuration. The die is inverted, with an upper surface facing an upper side of a redistribution layer, with the solder bumps in electrical contact with respective chip contact pads of the redistribution layer. The redistribution layer includes conductive traces that place each of the solder bumps in electrical contact with one or both of one of a plurality of upper redistribution contact pads and one of a plurality of lower redistribution contact pads. Each of the plurality of upper redistribution contact pads has an upper solder ball in electrical contact therewith. The die and the upper solder balls are at least partially encapsulated in a layer of mold compound positioned on the upper surface of the redistribution layer, and whose lateral dimensions are defined by the lateral dimensions of the redistribution layer. The layer of mold compound has a back-ground surface at which a portion of each of the upper solder balls is exposed, for electrical contact with an upper package. Each of the lower redistribution contact pads has a lower solder ball a coupled thereto.
Abstract:
A method for manufacturing a fan-out embedded panel-level package. Film having an adhesive on each side is applied to the non-active face of a plurality of semiconductor die while the die are still in wafer form. The die are singulated from the wafer and placed on a carrier, using the adhesive on the unused side of the film to attach the die to the carrier. Encapsulant material is dispensed onto the carrier adjacent to the die, providing an exposed surface on the encapsulant material approximately even with the active faces of the die. Elements of the redistribution layer such as conductors and fan-out pads are applied to this surface. A solder ball array is placed on the fan-out pads and then the die are re-singulated by cutting through the encapsulation material and the carrier, yielding individual electronic packages.
Abstract:
A method and system for tracing die at unit level, comprising: assigning a first identification to a support member including a plurality of die support units; generating a second identification corresponding to a die support unit, the second identification including the first identification and a coordinate of the die support unit within the support member; correlating the second identification to a third identification of a die; attaching the die to the die support unit to generate a packaged die; and assigning the second identification to the packaged die.
Abstract:
Composite materials having conductive properties are described for use in testing circuits and in manufacturing electrical switches. The composite materials described, when in an unstressed state, generally behave as insulators. However, when sufficient mechanical pressure is applied to portions of the composite materials, the portions to which the mechanical pressure is applied become increasingly conductive. Methods for testing a PCB using composite material switches are also disclosed. A sheet that includes a composite material may be used to test electrical functionality of various regions on a PCB by way of local pressure application. The sheet may be easily applied to and removed from the PCB. Additionally, in forming an electrical switch, a voltage applied to one or more actuating elements may be used to provide mechanical pressure to a composite material that is disposed between two conductive members. Application of a sufficient voltage allows for portions of the composite material to transition from an insulator to a conductor for providing an electrical pathway.
Abstract:
An analog T switch is disclosed which has high isolation in the off state. The analog T switch can include series-connected NMOS transistors having separate gate control. The gates of the NMOS transistors can be isolated from one another to improve off state isolation of the analog T switch. The analog switch can include series-connected PMOS transistors having separate gate control. The gates of the PMOS transistors can be isolated from one another to improve off state isolation of the analog T switch. The analog T switch can include a substrate voltage control circuit that controls the voltage of the substrate regions in which the PMOS transistors are formed. The substrate voltage control circuit can isolate the substrate regions of the PMOS transistors from one another in the off state to improve off state isolation of the analog T switch.
Abstract:
An integrated circuit includes a first storage location, a first generator, a converter, and a second generator. The first storage location is operable to store a first adjustment value. The first generator is coupled to the first storage location, is operable to generate a first signal having a first characteristic, and includes a first adjuster operable to change the first characteristic in response to the first adjustment value. The converter is coupled to the first storage location and is operable to generate from the first adjustment value a modified adjustment value. The second generator is coupled to the converter, is operable to generate a second signal having a second characteristic, and includes a second adjuster operable to change the second characteristic in response to the modified adjustment value.
Abstract:
Aspects of the invention are directed towards an integrated circuit package and method of forming the same, and more particularly to a redistributed chip packaging for an integrated circuit. The integrated circuit package includes an integrated circuit having a protective material on at least a portion of the integrated circuit. A lead frame is coupled to the integrated circuit and a conductive layer is also coupled to the interconnect. A solder ball is coupled to the conductive layer and a passivation layer is on the conductive layer. Active and passive components are electrically coupled to the integrated circuit.
Abstract:
A method of decoding audio data, encoded in multiple DIF blocks in a Digital Video (DV) data stream, and outputting said audio data as a PCM frame, includes fetching a single Digital Interface Frame (DIF) block from the DV data stream. A first byte in the single DIF block is de-shuffled to determine its index (n) in the PCM frame. Each byte in the in the single DIF block is de-shuffled to determine its respective index (n) in the PCM frame. The de-shuffled data is written into the PCM frame for output if the present DIF block is the last in the present DV frame. Subsequent DIF blocks in the DV frame are processed in the manner described above.
Abstract:
In an embodiment, a multi-carrier signal (e.g., an OFDM signal) is received over a channel. Indicators of interference and the channel response at a carrier frequency of the signal are determined, and compared. If the indicator of interference has a particular relationship to the indicator of the channel response, then a data value transmitted at the carrier frequency is recovered from a data value received at the carrier frequency according to a particular data-recovery algorithm. Because the particular data-recovery algorithm may be faster than a conventional data-recovery algorithm, recovering one or more data values with the particular algorithm may increase the speed at which data is recovered from a multicarrier signal as compared to using a conventional data-recovery algorithm.
Abstract:
Pitch detection of speech signals finds numerous applications in karaoke, voice recognition and scoring applications. While most of the existing techniques rely on time domain methods, the invention utilizes frequency domain methods. There is provided a method and system for determining the pitch of speech from a speech signal. The method includes the steps of: producing or obtaining the speech signal; distinguishing the speech signal into voiced, unvoiced or silence sections using speech signal energy levels; applying a Fourier Transform to the speech signal and obtaining speech signal parameters; determining peaks of the Fourier transformed speech signal; tracking the speech signal parameters of the determined peaks to select partials; and determining the pitch from the selected partials using a two-way mismatch error calculation.