Abstract:
A protective modular package cover has first and second fastening sections located at opposing first and second ends with one or more subassembly receiving sections disposed thereto and is configured to fasten the protective modular package cover to a core. Each fastening section has a foot surface located on a bottom surface of a fastening section and configured to make contact with the core, a mounting hole configured to receive a fastener, and a torque element. Each subassembly receiving section is configured to receive a subassembly and has a cross member formed along the underside of the protective modular package cover. Activation of the first torque element transfers a downward clamping force generated at the fastening element to a top surface of one or more subassemblies disposed in the one or more subassembly receiving sections via the cross member of each of the one or more subassembly receiving sections.
Abstract:
An intelligent audio speaker that uses a power line communication element to provide audio distribution within homes, businesses, apartment complexes, and other buildings. Multiple intelligent audio speakers may be networked together, with common control. The intelligent audio speaker may, in some embodiments of the present invention, contain enhanced ambient backlight effects to further enhance the listener's experience. In some embodiments of the present invention, an existing audio speaker is retrofitted to an intelligent audio speaker using a retrofit kit.
Abstract:
A method includes receiving first encoded data associated with one or more first lanes and decoding the first encoded data to produce decoded data. The method also includes encoding the decoded data to produce second encoded data associated with one or more second lanes and transmitting the second encoded data. In some embodiments, the method may further include multiplexing a plurality of code group sequences (the second encoded data) into the one or more second lanes, and the number of first lanes may be greater than the number of second lanes. In other embodiments, the method may also include demultiplexing a plurality of code group sequences from the one or more first lanes into a plurality of the second lanes, and the number of first lanes may be less than the number of second lanes.
Abstract:
Methods and apparatus of integrating a buried-channel PMOS into a BiCMOS process. The apparatus comprises at least one bipolar transistor and at least one MOS device coupled to the at least one bipolar transistor, such that a gate of the at least one MOS device may be coupled to an emitter of the at least one bipolar transistor. The MOS device comprises a buried channel having mobility means, such as strained silicon for promoting hole mobility in the buried channel, and confinement means, such as a cap layer disposed proximate to the buried channel for limiting leakage of holes from the buried channel. The apparatus may be formed by exposing a substrate in a PMOS, forming a SiGe layer on the substrate, forming an oxide layer on the SiGe layer, masking the PMOS, and removing at least some of the oxide and at least some of the SiGe layer.
Abstract:
A system and method for optimal allocation of bandwidth in a multichannel transmission channel. In an embodiment, a system may allocate a specific amount of bandwidth in the transmission channel in order to maximize the value of the data that is transmitted on a per-channel basis. Typically, a transmission channel has enough bandwidth to accommodate the minimum bandwidth for all data across all channels. The excess bandwidth may be allocated in an optimal manner so as to provide additional bandwidth for the most valuable channels. The maximum allocation of bandwidth is a point in which allocating additional bandwidth to a channel does not yield any additional value. Such an allocation may be accomplished using an iterative analysis of the available bandwidth and a microeconomic-based analysis of the subjective value of each channel.
Abstract:
A leadless semiconductor package includes a package body on a leadframe that includes a die paddle and a plurality of bond pads, none of which extend as far as a lateral face of the body. During manufacture of the package, molding compound is deposited over a face of the leadframe on which the die paddle and bond pads are positioned. After the molding compound is cured, a back side of the leadframe is etched to isolate the die paddle and bond pads, back surfaces of which remain exposed at a back face of the body. During manufacture of the leadframe, a parent substrate is etched to define the die paddle and a plurality of bond pads on one side of the substrate and a plurality of cavities on the opposite face.
Abstract:
A method of manufacturing a modular semiconductor subassembly: providing at least one semiconductor subassembly having a modular sidewall element of modular dimensions and a semiconductor substrate base element coupled to the modular sidewall element that has at least one semiconductor element with a layout sized to be accommodated by modular dimensions of the modular sidewall element. If a modular package protective cover is to be used: providing the modular package protective cover configured to accommodate the semiconductor subassembly in accordance with a modular design; securing the semiconductor subassembly in the modular package protective cover to create a modular package assembly; and mounting the modular package assembly to a core, with a base side of the semiconductor substrate base element in contact with the core; otherwise: mounting the at semiconductor subassembly to the core, with the base side of the semiconductor substrate base element in contact with the core.
Abstract:
Multiple virtual MAC addresses may be added to WGA devices that may have different traffic streams to another device that requires different services, thus creating distinct MAC and device level implications. Beamforming training can be done at the device level for all virtual MAC addresses. Wakeup, doze, and ATIM power save can be done at the device level depending on the frames received. Authentication, deauthentication, association, and deassociation can be done variously at both levels. Further MSDUs can be aggregated for the multiple MAC addresses.
Abstract:
One or more digital video frames are interpolated using motion compensated temporal interpolation (MCTI). The quality of motion vectors corresponding to object motion between the two adjacent second video frames is detected. An average of forward motion vectors and an average of backward motion vectors representing motion of the object are compared by calculating the absolute value difference of the averaged forward and backward motion vectors to detect the quality of the motion vectors and a control signal is generated corresponding to the detected quality. Customized Image segmentation based on a first mode of image processing, a second mode of image processing or a combination of the first and second modes of image processing is then performed based on the detected accuracy to generate the interpolated frame.
Abstract:
A method of designing a desired modular assembly: determining a package outline of a modular package assembly; determining seating plane and overall package length characteristics; calculating minimum package height of the modular package assembly; designing the dimensions and the configuration of semiconductor subassemblies by receiving semiconductor subassembly user input design data at the design tool, each semiconductor subassembly of the one or more semiconductor subassemblies comprising a modular sidewall element and a semiconductor substrate base element coupled to the modular sidewall element, the semiconductor substrate base element having at least one semiconductor element with a layout sized to be accommodated by modular dimensions of the modular sidewall element and the semiconductor substrate base element configured to form a base of the semiconductor subassembly; and incorporating the configuration and dimensions of the modular package assembly and the one or more semiconductor subassemblies into a manufacturing assembly process.