Abstract:
Systems and methods for transceiver communication are discussed herein. A filter module may be configured to filter each carrier signal of a multicarrier transmit signal with a different bandpass filter, each bandpass filter configured to filter a different frequency band. A carrier control module may be configured to control the plurality of bandpass filters of the filter module using a carrier selection signal to enable or disable each bandpass filter, thereby coupling carrier signals of the multicarrier transmit signal to a first set of bandpass filters and decoupling a second set of bandpass filters. Filtering the carrier signals of the multicarrier transmit signal is performed by the first set of bandpass filters while the decoupling of the second set of bandpass filters limits energy in the respective frequency band. An antenna may be configured to transmit the filtered multicarrier transmit signal.
Abstract:
A first layer one link aggregation master comprises a first port coupled to receive customer traffic; a first channel; a second channel; an aggregation engine coupled to the first and second channels; a first switch circuit coupled to the first port and to the first channel, and configured to communicate the customer traffic from the first port over the first channel to the aggregation engine, the aggregation engine including a splitter circuit configured to use layer one information to segment at least a portion of the customer traffic into a first virtual container and a second virtual container, the aggregation engine further including an encapsulation circuit configured to encapsulate the second virtual container using Ethernet standards for transport over the second channel; a radio access card configured to generate an air frame based on the first virtual container for wireless transmission over a first wireless link of a link aggregation group to the receiver; and a second switch circuit coupled to the second channel, and configured to communicate the Ethernet-encapsulated second virtual container over an Ethernet cable to a slave for wireless transmission over a second wireless link of the link aggregation group to the receiver.
Abstract:
A layer one link aggregation master comprises a port coupled to receive customer traffic; a first switch configured to communicate the customer traffic from the port over a first channel to an aggregation engine, the aggregation engine including a splitter configured to use layer one information to segment a portion of the customer traffic into a first virtual container and a second virtual container, the aggregation engine further including an encapsulation circuit configured to encapsulate the second virtual container for transport over the second channel; a radio access card configured to generate an air frame based on the first virtual container for transmission over a first wireless link of a link aggregation group to a receiver; and a second switch configured to communicate the encapsulated second virtual container over a cable to a slave for transmission over a second wireless link of the link aggregation group to the receiver.
Abstract:
Systems and methods for transceiver communication are discussed herein. A filter module may be configured to filter each carrier signal of a multicarrier transmit signal with a different bandpass filter, each bandpass filter configured to filter a different frequency band. A carrier control module may be configured to control the plurality of bandpass filters of the filter module using a carrier selection signal to enable or disable each bandpass filter, thereby coupling carrier signals of the multicarrier transmit signal to a first set of bandpass filters and decoupling a second set of bandpass filters. Filtering the carrier signals of the multicarrier transmit signal is performed by the first set of bandpass filters while the decoupling of the second set of bandpass filters limits energy in the respective frequency band. An antenna may be configured to transmit the filtered multicarrier transmit signal.
Abstract:
A system may include at least one antenna for receiving a first receive signal having a first signal diversity property and a second receive signal having a second signal diversity property. A first signal path may include a first frequency converter for downconverting the first receive signal to a first intermediate frequency signal having a first intermediate frequency. A second signal path may include a second frequency converter for downconverting the second receive signal to a second intermediate frequency signal having a second intermediate frequency. A transducer module may route the first receive signal to the first signal path, and route the second receive signal to the second signal path. A first N-plexer may select the first intermediate frequency signal or the second intermediate frequency signal for transmission to a cable, and to provide a data signal based on a selected intermediate frequency signal to the cable.
Abstract:
An example system comprises a first antenna and a modem. The first antenna is configured to receive a signal from a transmitting radio frequency unit. The signal includes data and a known sequence. The modem is configured to retrieve the known sequence from the signal, transform the known sequence and the data into a frequency domain, calculate averages of groups of neighboring frequency points in the frequency domain to reduce the effect of nonlinear noise in the signal, the neighboring frequency points corresponding to the preamble in the frequency domain, compare the calculated averages to an expected frequency response in the frequency domain, determine a correction filter to apply to the data based on the comparison, apply the correction filter on the data in the frequency domain to create corrected data, transform the corrected data from the frequency domain to the time domain, and provide the data.
Abstract:
Various embodiments provide for systems and methods for increased linear output power of a transmitter. An exemplary wireless communications system for transmitting an input signal comprises a predistorter module, a GaN power amplifier, a coupler, and an antenna. The predistorter module is configured to detect existing distortion by comparing the input signal to a feedback signal and generate a correction signal. The predistorter may adaptively adjust its operation to minimize the existing distortion due to GaN power amplifier nonlinear characteristics. The result is that the GaN power amplifier may send a power signal of improved linearity to the antenna. The coupler is configured to sample the amplified signal from the GaN power amplifier to generate the feedback signal. The antenna is configured to transmit the amplified signal.
Abstract:
One design aspect in electronic systems, such as communication systems, is noise suppression. More particularly, this relates to microphonics suppression in high-speed communication systems, such as microwave wireless radio systems. The present invention contemplates system design for substantially eliminating microphonic behavior created by mechanical stimulus such as vibrations and the drum effect. A preferred approach includes isolating the motherboard from its mounting harnesses (mechanical interconnection) and adding an echo damping and shock absorption pad to the underside of the enclosure cover to stiffen the enclosure cover while maintaining its light weight. Preferably also, this approach isolates the entire motherboard rather than a particular component. A design using this approach is particularly useful in an outdoor unit (ODU) of a split-mount microwave radio system.
Abstract:
A system may include a transmitting device. The transmitting device may include one or more terminals for receiving a data signal and a first clock signal. A first phase lock loop may lock a phase of an initial periodic signal with a phase of the first clock signal, the first phase lock loop including a divider to generate the initial periodic signal based on the first clock signal. A decimation module may sample the initial periodic signal at a decimated rate of a backplane clock, the backplane clock being asynchronous with a clock that generated the first clock signal. A transmitting data block interface may construct data blocks and provide the data blocks to a receiving device, each of one or more of the data blocks including a portion of the data signal and at least one sample of the initial periodic signal.
Abstract:
Various embodiments provide for systems and methods for signal conversion of one modulated signal to another modulated signal using demodulation and then re-modulation. According to some embodiments, a signal receiving system may comprise an I/Q demodulator that demodulates a first modulated signal to an in-phase (“I”) signal and a quadrature (“Q”) signal, an I/Q signal adjustor that adaptively adjusts the Q signal to increase the signal-to-noise ratio (SNR) of a transitory signal that is based on a second modulated signal, and an I/Q modulator that modulates the I signal and the adjusted Q signal to the second modulated signal. To increase the SNR, the Q signal may be adjusted based on a calculated error determined for the transitory signal during demodulation by a demodulator downstream from the I/Q modulator.