Abstract:
The invention provides an electronic device package and a method for fabricating the same. The electronic device package includes a carrier wafer. An electronic device chip with a plurality of conductive pads thereon is disposed over the carrier wafer. An isolation laminating layer includes a lower first isolation layer, which covers the carrier wafer and the electronic device chip, and an upper second isolation layer. The isolation laminating layer has a plurality of openings to expose the conductive pads. A plurality of redistribution patterns is conformably formed on the isolation laminating layer and in the openings. The redistribution patterns are electrically connected to the conductive pads, respectively. A plurality of conductive bumps is respectively formed on the redistribution patterns, electrically connected to the conductive pads.
Abstract:
The present disclosure provides a method of fabricating a semiconductor device. The method includes forming a plurality of circuit devices over a substrate. The method includes forming an organic layer over the substrate. The organic layer is formed over the plurality of circuit devices. The method includes polishing the organic layer to planarize a surface of the organic layer. The organic layer is free of being thermally treated prior to the polishing. The organic material is un-cross-linked during the polishing. The method includes depositing a LT-film over the planarized surface of the organic layer. The depositing is performed at a temperature less than about 150 degrees Celsius. The depositing is also performed without using a spin coating process. The method includes forming a patterned photoresist layer over the LT-film.
Abstract:
A processor includes a scalar processor core and a vector coprocessor core coupled to the scalar processor core. The scalar processor core includes a program memory interface through which the scalar processor retrieves instructions from a program memory. The instructions include scalar instructions executable by the scalar processor and vector instructions executable by the vector coprocessor core. The vector coprocessor core includes a plurality of execution units and a vector command buffer. The vector command buffer is configured to decode vector instructions passed by the scalar processor core, to determine whether vector instructions defining an instruction loop have been decoded, and to initiate execution of the instruction loop by one or more of the execution units based on a determination that all of the vector instructions of the instruction loop have been decoded.
Abstract:
Roughly described, a network interface device receiving data packets from a computing device for transmission onto a network, the data packets having a certain characteristic, transmits the packet only if the sending queue has authority to send packets having that characteristic. The data packet characteristics can include transport protocol number, source and destination port numbers, source and destination IP addresses, for example. Authorizations can be programmed into the NIC by a kernel routine upon establishment of the transmit queue, based on the privilege level of the process for which the queue is being established. In this way, a user process can use an untrusted user-level protocol stack to initiate data transmission onto the network, while the NIC protects the remainder of the system or network from certain kinds of compromise.
Abstract:
A portable electronic device has a battery to provide power to operate the device, a connector including a power supply pin to be coupled to an external power supply, and a power manager having a battery charger circuit that draws power through the power supply pin to charge the battery. The power manager has a current limit feedback control loop that limits the drawn current in accordance with a predetermined output current rating of the external power supply. The power manager automatically changes the behavior of its control loop to stabilize operation of the coupled external power supply. Other embodiments are also described and claimed.
Abstract:
A method of handling an access network discovery and selection function (ANDSF) for a network of a wireless communication system is disclosed. The method comprises determining a first plurality of closed subscriber group (CSG) cells of the wireless communication system with a first CSG identity, for a mobile device of the wireless communication system to communicate with an evolved packet core (EPC) network of the wireless communication system via the first plurality of CSG cells, after the network determines the 3rd Generation Partnership Project (3GPP) as an access technology for the mobile device; and configuring an inter-system mobility policy (ISMP) node such that a value of an AccessTechnology leaf of a PrioritizedAccess node is configured as the 3GPP, and a value of a first AccessId leaf of the PrioritizedAccess node is configured as the first CSG identity of the first plurality of CSG cells.
Abstract:
A foundation pile includes a tubular wall, a top cap covering a top end of the tubular wall, a partition plate disposed transversely in the tubular wall below the top cap and dividing an inner space of the tubular wall into upper and lower spaces, two opposite fixing holes extending radially through the tubular wall and communicated with the upper space, and a plurality of pressure release holes extending radially through the tubular wall and communicated with the lower space. The partition plate prevents concrete slurry from flowing into the upper space. The pressure release holes allow the concrete to consolidate therein and to thereby increase transverse binding forces with the foundation pile. A method of installing the foundation pile is also disclosed.
Abstract:
A docking station includes an enclosure, two hook assemblies, a transmission assembly, a button and a pusher assembly. The enclosure defines a receiving room, two first through holes and a second through hole. The hook assemblies pass through the first through holes to secure an electronic device. The transmission assembly engages with the hook assemblies to drive the hook assemblies move forward and backward in the first through holes to be coupled to and uncoupled from the electronic device. The button extends into the receiving room from outside of the enclosure and used to drive the transmission assembly move. The pusher assembly passes through the second through hole to push the electronic device away from the enclosure. When the hook assemblies are detached from the electronic device, the pusher assembly push the electronic device detach from the enclosure.
Abstract:
A method for handling Machine Type Communication (MTC) device triggering by a service network connected to an MTC server and at least one MTC device is provided. The method includes the steps of receiving a trigger request message from the MTC server, and transmitting a trigger indication comprising trigger information to the MTC device in response to the trigger request message.