Abstract:
This invention relates to a catalyst system comprising a catalyst and a support comprising a non-layered inorganic porous crystalline phase material, wherein the support comprises a hexagonal arrangement of uniformly-sized pores having an average pore diameter greater than or equal to about 13 Å, an X-ray diffraction pattern having a calculated d100 value of greater than or equal to about 18 Å, an adsorption capacity of greater than or equal to about 15 grams benzene per 100 grams support at 50 torr and at 25° C., and a pore wall thickness of less then or equal to about 25 Å.
Abstract:
There is provided a method for preparing crystalline ultra-large pore oxide materials. The materials are formed from reaction mixtures comprising an amphiphilic compound, such as a cetyltrimethylammonium compound, a source of at least one oxide, such as silica, and water. The concentration of amphiphilic compounds in these reaction mixtures is rather low. The addition of an inorganic salt, such as sodium bromide, to the reaction mixture may result in the increased thermal stability of the as-synthesized form of the crystalline material and may also alter the crystalline phase of the product.
Abstract:
A method of preparing silicoaluminophosphate (SAPO) compositions from a forming mixture which comprises sources of oxides of silicon, aluminum and phosphorus wherein the oxides of silicon and phosphorus are provided at least in part by a reagent containing both phosphorus and silicon reactive sites in the same molecule; and maintaining the forming mixture under conditions sufficient to form said compositions. The reagent is preferably a phosphonate-functionalized organosiliconate such as diethylphosphatoethyltriethoxysilane.
Abstract:
A method of preparing silicoaluminophosphate (SAPO) compositions from a forming mixture which comprises sources of oxides of silicon, aluminum and phosphorus and quaternary ammonium-functionalized organosiliconate directing agent wherein the oxides of silicon are provided at least in part by said directing agent, e.g., N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride.
Abstract:
A process is provided for separating at least one component from a mixture of components which comprises contacting the mixture with a composition comprising a functionalized inorganic, porous, non-layered crystalline phase having uniformly sized pores of at least about 13, e.g., at least about 15, Angstrom Units in diameter.
Abstract:
An adsorption-desorption material, in particular, crosslinked organo-amine polymeric materials having a weight average molecular weight of from about 500 to about 1×106, a total pore volume of from about 0.2 cubic centimeters per gram (cc/g) to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles of CO2 adsorbed per gram of adsorption-desorption material, and linear organo-amine polymeric materials having a weight average molecular weight of from about 160 to about 1×106, a total pore volume of from about 0.2 cubic centimeters per gram (cc/g) to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles of CO2 adsorbed per gram of adsorption-desorption material. This disclosure also relates in part to processes for preparing the crosslinked organo-amine materials and linear organo-amine materials. This disclosure further relates in part to the selective removal of CO2 and/or other acid gases from a gaseous stream containing one or more of these gases using the adsorption-desorption materials.
Abstract:
An adsorption-desorption material, in particular, crosslinked organo-amine polymeric materials having a weight average molecular weight of from about 500 to about 1×106, a total pore volume of from about 0.2 cubic centimeters per gram (cc/g) to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles of CO2 adsorbed per gram of adsorption-desorption material, and linear organo-amine polymeric materials having a weight average molecular weight of from about 160 to about 1×106, a total pore volume of from about 0.2 cubic centimeters per gram (cc/g) to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles of CO2 adsorbed per gram of adsorption-desorption material. This disclosure also relates in part to processes for preparing the crosslinked organo-amine materials and linear organo-amine materials. This disclosure further relates in part to the selective removal of CO2 and/or other acid gases from a gaseous stream containing one or more of these gases using the adsorption-desorption materials.
Abstract:
An adsorption-desorption material, in particular, crosslinked organo-amine polymeric materials having a weight average molecular weight of from about 500 to about 1×106, a total pore volume of from about 0.2 cubic centimeters per gram (cc/g) to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles of CO2 adsorbed per gram of adsorption-desorption material, and linear organo-amine polymeric materials having a weight average molecular weight of from about 160 to about 1×106, a total pore volume of from about 0.2 cubic centimeters per gram (cc/g) to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles of CO2 adsorbed per gram of adsorption-desorption material. This disclosure also relates in part to processes for preparing the crosslinked organo-amine materials and linear organo-amine materials. This disclosure further relates in part to the selective removal of CO2 and/or other acid gases from a gaseous stream containing one or more of these gases using the adsorption-desorption materials.
Abstract:
This disclosure involves an adsorption-desorption material, e.g., crosslinked polyvinyl-amine material having an Mw from about 500 to about 1×106, total pore volume from about 0.2 cc/g to about 2.0 cc/g, and a CO2 adsorption capacity of at least about 0.2 millimoles per gram of crosslinked material, and/or linear polyvinyl-amine material having an Mw from about 160 to about 1×106, total pore volume from about 0.2 cc/g to about 2.0 cc/g, and a CO2 adsorption capacity of at least about 0.2 millimoles per gram of linear material. This disclosure also involves processes for preparing the crosslinked polyvinyl-amine materials and linear polyvinyl-amine materials, as well as selective removal of CO2 and/or other acid gases from a gaseous stream using the polyvinyl-amine materials.
Abstract:
An adsorption-desorption material, in particular, crosslinked vinylepoxide-amine polymeric materials having an Mw from about 500 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles adsorbed CO2 per gram of adsorption-desorption material, and linear vinylepoxide-amine polymeric materials having an Mw from about 140 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles adsorbed CO2 per gram of adsorption-desorption material. This disclosure also relates to processes for preparing the crosslinked and linear vinylepoxide-amine materials, as well as to selective removal of CO2 and/or other acid gases from a gaseous stream using the vinylepoxide materials.