Abstract:
A microfluidic device and method is provided for coupling discrete channels and for co-culture. The microfluidic device includes first and second bodies. Each body has a bottom surface and defines a channel. The channel in each body includes an inlet and an outlet communicating with the bottom surface. A first fluid, such as a first cell suspension, is provided within the channel of the first body and a second fluid, such a second cell suspension, is provided within the channel of the second body. The first and second bodies are movable between a first position wherein the outlet of the channel of the first body is spaced from the inlet of the channel of the second body and a second position wherein the fluid at the outlet of the channel of the first body communicates with the fluid at the inlet of the channel of the second body.
Abstract:
A method and device is provided for detecting a predetermined material. The device includes a first inner layer having first and second surfaces and a volume responsive to a first predetermined stimuli. A second inner layer has first and second surfaces. An adhesive bonds at least a portion of the first surface of the first inner layer to the first surface of the second inner layer with a bonding force. A change in the volume of the first layer generates an elastic force on the adhesive material. As a result, the first inner layer delaminates from the second inner layer in response to the elastic force overcoming the bonding force.
Abstract:
A microfluidic device and method is provided for determining a cell concentration in a sample. The microfluidic device includes a body having a channel therethough that extends along an axis. The channel includes an input and an output, and is at least partially defined by a surface. Indicia overlaps the surface. The channel has a predetermined volume. A portion of the sample is provided in the channel and the cells in the predetermined portions of the channel defined by the indicia are counted.
Abstract:
A method and device is provided for detecting a predetermined material. The device includes a first inner layer having first and second surfaces and a volume responsive to a first predetermined stimuli. A second inner layer has first and second surfaces. An adhesive bonds at least a portion of the first surface of the first inner layer to the first surface of the second inner layer with a bonding force. A change in the volume of the first layer generates an elastic force on the adhesive material. As a result, the first inner layer delaminates from the second inner layer in response to the elastic force overcoming the bonding force.
Abstract:
A device and method are provided for determining the wear of a sole of a shoe. The device includes first and second sensors receivable in the sole of the shoe. The sensors are axially spaced and generate signals in response to corresponding impact forces acting thereon. A control circuit is connectable to the first and second sensors. The control circuit compares the difference between the first and second signals to a threshold and generates an alert signal in response to the difference between the first and second signal meeting the threshold.
Abstract:
A method is provided for pumping fluid through a channel of a microfluidic device. The channel has an input port of a predetermined radius and an output port of a predetermined radius. The channel is filled with fluid and a pressure gradient is generated between the fluid between the input port and the fluid at the output port. As a result, fluid flows through the channel towards the output port.
Abstract:
A method of fabricating a microstructure is provided. The method includes the step of providing a layer of a polyermizable material. A solid is brought into contact with the layer of polymerizable material so as to alter the shape of the upper surface of the layer. Thereafter, the layer of polymerizable material is polymerized such that the layer solidifies and the upper surface thereof assumes a desired three-dimensional configuration.
Abstract:
An active microneedle array and method are provided for penetrating an outer layer of an epidermis. The active microneedle array includes a base having first and second sides. The first side of the base is engageable with the epidermis. A microneedle projects from the first side of the base. The microneedle is moveable between a first initial configuration and a second deformed configuration in response to engagement with the epidermis so as to form a passageway therein.
Abstract:
A method is provided for collecting a concentration of particles from a sample fluid containing the particles. The method includes the steps of providing a microfluidic device. The microfluidic device includes an input channel, an output channel and a collection region. The input channel has an input end and an output end. The output channel has an input end and an output end. The collection region interconnects the output end of the input channel and the input end of the output channel. The sample fluid flows through the input channel and the output channel at a first velocity and through the collection region at a second velocity less than the first velocity such that the particles collect in therein.
Abstract:
A device and method of laminar flow patterning of at least one sample fluid in a main channel in a microfluidic device are provided. A first input channel is provided in the microfluidic device. The first input channel has an output end communicating with the first end of the main channel and an input end communicating with a first input port. A buffer fluid is deposited in the main channel and the first input channel and a first sample fluid is deposited in the first input port. A first pressure is generated in response to the depositing of the first sample fluid in the first input port so as to cause laminar flow of the first sample fluid in the main channel.