Abstract:
A device for controlling, detecting, and measuring a molecular complex is disclosed. The device comprises a common electrode. The device further comprises a plurality of measurement cells. Each measurement cell includes a cell electrode and an integrator electronically coupled to the cell electrode. The integrator measures the current flowing between the common electrode and the cell electrode. The device further comprises a plurality of analog-to-digital converters, wherein an integrator from the plurality of measurement cells is electrically coupled to one analog-to-digital converter of the plurality of analog-to-digital converters.
Abstract:
Techniques for forming a nanopore in a lipid bilayer are described herein. In one example, an agitation stimulus level such as an electrical agitation stimulus is applied to a lipid bilayer wherein the agitation stimulus level tends to facilitate the formation of nanopores in the lipid bilayer. In some embodiments, a change in an electrical property of the lipid bilayer resulting from the formation of the nanopore in the lipid bilayer is detected, and a nanopore has formed in the lipid bilayer is determined based on the detected change in the lipid bilayer electrical property.
Abstract:
Systems and methods of polynucleotide sequencing are provided. Systems and methods optimize control, speed, movement, and/or translocation of a sample (e.g., a polynucleotide) within, through, or at least partially through a nanopore or a type of protein or mutant protein in order to accumulate sufficient time and current blocking information to identify contiguous nucleotides or plurality of nucleotides in a single-stranded area of a polynucleotide.
Abstract:
Techniques for forming a nanopore in a lipid bilayer are described herein. In one example, an agitation stimulus level such as an electrical agitation stimulus is applied to a lipid bilayer wherein the agitation stimulus level tends to facilitate the formation of nanopores in the lipid bilayer. In some embodiments, a change in an electrical property of the lipid bilayer resulting from the formation of the nanopore in the lipid bilayer is detected, and a nanopore has formed in the lipid bilayer is determined based on the detected change in the lipid bilayer electrical property.
Abstract:
Techniques for forming a nanopore in a lipid bilayer are described herein. In one example, an agitation stimulus level such as an electrical agitation stimulus is applied to a lipid bilayer wherein the agitation stimulus level tends to facilitate the formation of nanopores in the lipid bilayer. In some embodiments, a change in an electrical property of the lipid bilayer resulting from the formation of the nanopore in the lipid bilayer is detected, and a nanopore has formed in the lipid bilayer is determined based on the detected change in the lipid bilayer electrical property.
Abstract:
This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
Abstract:
A method of exporting measurements of a nanopore sensor on a nanopore based sequencing chip is disclosed. An electrical characteristic associated with the nanopore sensor is measured. The electrical characteristic associated with the nanopore sensor is processed. A summary for the electrical characteristic and one or more previous electrical characteristics is determined. The summary for the electrical characteristic and the one or more previous electrical characteristics are exported. Determining the summary includes determining that the electrical characteristic and at least a portion of the one or more previous electrical characteristics correspond to a base call event at the nanopore sensor. The summary represents the electrical characteristic and the at least a portion of the one or more previous electrical characteristics.
Abstract:
Disclosed are methods for isolating polymerase complexes from a mixture of polymerase complex components. The polymerase complexes can comprise a nanopore to provide isolated nanopore sequencing complexes. The methods relate to the positive and negative isolation of the polymerase complexes and/or nanopore sequencing complexes. Also disclosed is a nucleic acid adaptor for isolating active polymerase complexes, polymerase complexes comprising the nucleic acid adaptor, and methods for isolating active polymerase complexes using the nucleic acid adaptor.
Abstract:
A method of identifying a molecule is disclosed. A molecule is drawn to a nanopore by applying a first voltage signal to a pair of electrodes during a first period, wherein the first voltage signal causes a first ionic current through the nanopore that is indicative of a property of a portion of the molecule proximate to the nanopore. The molecule is released from the nanopore by applying a second voltage signal to the pair of electrodes during a second period, wherein the second voltage signal causes a second ionic current through the nanopore. The first period and the second period are determined based at least in part on a net ionic current through the nanopore comprising the first ionic current and the second ionic current.
Abstract:
A method of analyzing molecules using a nanopore array including a plurality of cells included on a chip is disclosed. Nanopores are caused to be formed in at least a portion of the plurality of the cells. A first physical measurement of the nanopores is evaluated. It is determined whether to cause the molecules to interact with the nanopores. At least a portion of the nanopores is caused to interact with the molecules. A second physical measurement of the nanopores that indicates a property of the molecules is evaluated. It is determined whether to cause the nanopores to be reformed so that the cells may be reused to interact with additional molecules.