Abstract:
A TFT includes a zinc oxide (ZnO)-based channel layer having a plurality of semiconductor layers. An uppermost of the plurality of semiconductor layers has a Zn concentration less than that of a lower semiconductor layer to suppress an oxygen vacancy due to plasma. The uppermost semiconductor layer of the channel layer also has a tin (Sn) oxide, a chloride, a fluoride, or the like, which has a relatively stable bonding energy against plasma. The uppermost semiconductor layer is relatively strong against plasma shock and less decomposed when being exposed to plasma, thereby suppressing an increase in carrier concentration.
Abstract:
Example embodiments relate to thin-film transistors (TFT) and methods for fabricating the same. A thin-film transistor according to example embodiments may include a gate, a gate insulation layer, a channel layer including a first oxide semiconductor layer and a second oxide semiconductor layer, and a source and drain on opposite sides of the channel layer. The first oxide semiconductor layer may have relatively large crystal grains compared to the second oxide semiconductor layer.
Abstract:
Provided is a method of manufacturing a thin film transistor, the method comprising: forming an amorphous silicon layer on a substrate; forming a polysilicon layer by crystallizing the amorphous silicon layer; forming a mask structure that masks a portion of the polysilicon; forming a source and a drain region and a channel region interposed between the source and the drain regions in the polysilicon layer; injecting impurities having a first concentration using an ion beam implantation into one end and the other end of the polysilicon layer which are not covered by the mask structure. The ends of the polysilicon layer with the mask thereon is then subjected to ion bombardment to increase the level of impurities in the source and drain regions while at the same time shrinking the size of the masked regions.
Abstract:
Disclosed are a transistor, an electronic device and methods of manufacturing the same, the transistor including a photo relaxation layer between a channel layer and a gate insulating layer in order to suppress characteristic variations of the transistor due to light. The photo relaxation layer may be a layer of a material capable of suppressing variations in a threshold voltage of the transistor due to light. The photo relaxation layer may contain a metal oxide such as aluminum (Al) oxide. The channel layer may contain an oxide semiconductor.
Abstract:
Provided are an oxide semiconductor and an oxide thin film transistor including the oxide semiconductor. The oxide semiconductor may be formed of an indium (In)-zinc (Zn) oxide in which hafnium (Hf) is contained, wherein In, Zn, and Hf are contained in predetermined or given composition ratios.
Abstract:
An organic electro-luminescent display and a method of fabricating the same include an organic light emitting diode, a driving transistor which drives the organic light emitting diode, and a switching transistor which controls an operation of the driving transistor, wherein active layers of the switching and driving transistors are crystallized using silicides having different densities such that the active layer of the driving transistor has a larger grain size than the active layer of the switching layer.
Abstract:
Methods of manufacturing an oxide semiconductor thin film transistor are provided. The methods include forming a gate on a substrate, and a gate insulating layer on the substrate to cover the gate. A channel layer, which is formed of an oxide semiconductor, may be formed on the gate insulating layer. Source and drain electrodes may be formed on opposing sides of the channel layer. The method includes forming supplying oxygen to the channel layer, forming a passivation layer to cover the source and drain electrodes and the channel layer, and performing an annealing process after forming the passivation layer.
Abstract:
A method of degassing a thin layer and a method of manufacturing a silicon thin film includes applying microwaves to a silicon thin film deposited on a substrate to induce a resonance of impurities of H2, Ar, He, Xe, O2, and the like present in the silicon thin film so as to remove the impurities from the silicon thin film. A wavelength of the microwaves is equal to a natural frequency of an element of an object to be removed. According to a resonance of impurities induced by microwaves, the impurities can be very effectively removed from the silicon thin film so as to obtain a high quality silicon thin film. In particular, the microwaves are very suitable to be used in the manufacture of silicon thin films at low temperature.
Abstract:
A transistor includes; at least two polycrystalline silicon layers disposed substantially parallel to each other, each polycrystalline silicon layer including a channel region and at least two high conductivity regions disposed at opposing sides of the channel region; a gate which corresponds to the channel region of the two polycrystalline silicon layers and which crosses the two polycrystalline silicon layers, and a gate insulating layer interposed between the gate and the two polycrystalline silicon layers, wherein low conductivity regions are disposed adjacent to one edge of the gate and are formed between the channel region and one high conductivity region of each polycrystalline silicon layer.
Abstract:
Provided is a method of manufacturing a driving-device for a unit pixel of an organic light emitting display having an improved manufacturing process in which the driving device can be manufactured with a smaller number of processes and in simpler processes. The method includes: forming an amorphous silicon layer including a first amorphous region and a second amorphous region disposed on the same plane of a substrate; forming an SAM (self-assembled monolayer) having a hydrophobic property on the first amorphous region; coating an aqueous solution in which nickel particles are dispersed, on the second amorphous region and the SAM, wherein a larger amount of nickel particles than on the SAM are dispersed on the second amorphous region using a hydrophilicity difference between the second amorphous region and the SAM; vaporizing the SAM through an annealing process and simultaneously performing metal induced crystallization in which the nanoparticles are used as a medium, to crystallize the first and second amorphous regions and to form first and second crystallization regions; patterning the first and second crystallization regions to form first and second channel regions; and forming first and second electrodes on the first and second channel regions.