Abstract:
A method of manufacturing dual embedded epitaxially grown semiconductor transistors is provided, the method including depositing a first elongated oxide spacer over first and second transistors of different types, depositing a first elongated nitride spacer on the first oxide spacer, depositing a first photoresist block on the nitride spacer above the first transistor, etching the first nitride spacer above the second transistor, implanting a first halo around the second transistor, etching a first recess in an outer portion of the first halo, stripping the first photoresist above the first transistor, forming a first epitaxially grown semiconductor material in the first recess, implanting a first extension in a top portion of the first material, depositing an elongated blocking oxide over the first and second transistors and first extension, depositing a second photoresist block on the blocking oxide above the second transistor and first extension, etching the blocking oxide and first nitride spacer above the first transistor, implanting a second halo around the first transistor, etching a second recess in an outer portion of the second halo, stripping the second photoresist above the second transistor, forming a second epitaxially grown semiconductor material in the second recess, implanting a second extension in a top portion of the second material, etching the blocking oxide above the second transistor, etching nitride caps from the first and second transistors, depositing a second elongated oxide spacer on the first and second transistors, depositing a second elongated nitride spacer on the second oxide spacer, etching the second nitride spacer to leave nitride sidewalls around gates of the first and second transistors, and implanting deep sources and drains in the first and second transistors.
Abstract:
An integrated circuit that includes a substrate having first and second active regions is disclosed. A first transistor of a first type and a second transistor of a second type are disposed in the first and second active regions respectively. Each transistor includes a gate stack having a metal gate electrode over a gate dielectric layer. First and second gate threshold voltage adjusting (GTVA) layers contacting first and second gate dielectric layer of the first and second transistors are provided. The first GTVA layer tunes a gate threshold voltage of the first transistor. A channel of the second transistor includes dopants to tune the gate threshold voltage of the second transistor.
Abstract:
A method for fabricating a semiconductor device includes forming an SiGe region. The SiGe region can be an embedded source and drain region, or a compressive SiGe channel layer, or other SiGe regions within a semiconductor device. The SiGe region is exposed to an SC1 solution and excess surface portions of the SiGe region are selectively removed. The SC1 etching process can be part of a rework method in which overgrowth regions of SiGe are selectively removed by exposing the SiGe to and SC1 solution maintained at an elevated temperature. The etching process is carried out for a period of time sufficient to remove excess surface portions of SiGe. The SC1 etching process can be carried out at elevated temperatures ranging from about 25° C. to about 65° C.
Abstract:
Methods of fabricating transistors and semiconductor devices and structures thereof are disclosed. In one embodiment, a method of fabricating a transistor includes forming a gate dielectric over a workpiece, forming a gate over the gate dielectric, and forming a stress-inducing material over the gate, the gate dielectric, and the workpiece. Sidewall spacers are formed from the stress-inducing material on sidewalls of the gate and the gate dielectric.
Abstract:
A trench is formed in the surface of a provided semiconductor body. An oxide is deposited in the trench and a cap is deposited on the oxide, wherein the combination of the cap and the oxide impart a mechanical stress on the semiconductor body.
Abstract:
In one embodiment, the invention is a complementary metal-oxide-semiconductor device with an embedded stressor. One embodiment of a field effect transistor includes a silicon on insulator channel, a gate electrode coupled to the silicon on insulator channel, and a stressor embedded in the silicon on insulator channel and spaced laterally from the gate electrode, where the stressor is formed of a silicon germanide alloy whose germanium content gradually increases in one direction.
Abstract:
Semiconductor devices and methods of manufacturing thereof are disclosed. In a preferred embodiment, a method of manufacturing a semiconductor device includes providing a semiconductor wafer, forming a first material on the semiconductor wafer, and affecting the semiconductor wafer with a manufacturing process. The manufacturing process inadvertently causes a portion of the first material to be removed. The portion of the first material is replaced with a second material.
Abstract:
Semiconductor devices and methods of manufacturing thereof are disclosed. In a preferred embodiment, a method of manufacturing a semiconductor device includes providing a workpiece, and forming a recess in the workpiece. The recess has a depth having a first dimension. A first semiconductive material is formed in the recess to partially fill the recess in a central region to a height having a second dimension. The second dimension is about one-half or greater of the first dimension. A second semiconductive material is formed over the first semiconductive material in the recess to completely fill the recess, the second semiconductive material being different than the first semiconductive material.
Abstract:
In a method of making a semiconductor device, a first gate stack is formed on a substrate at a pFET region, which includes a first gate electrode material. The source/drain regions of the substrate are etched at the pFET region and the first gate electrode material of the first gate stack is etched at the pFET region. The etching is at least partially selective against etching oxide and/or nitride materials so that the nFET region is shielded by a nitride layer (and/or a first oxide layer) and so that the spacer structure of the pFET region at least partially remains. Source/drain recesses are formed and at least part of the first gate electrode material is removed by the etching to form a gate electrode recess at the pFET region. A SiGe material is epitaxially grown in the source/drain recesses and in the gate electrode recess at the pFET region. The SMT effect is achieved from the same nitride nFETs mask.
Abstract:
Method for fabricating semiconductor devices with high-K materials without the presence of undesired formations of the high-K material. A preferred embodiment comprises forming a layer of material over a layer of a high-K material, etching the layer of material to expose a portion of the high-K material, performing a CDE (Chemical Downstream Etch) to remove any residual material formed during the etching, and etching the layer of the high-K material into alignment with remaining portions of the layer of material. The removal of the residual material results in a predictable trimming of the high-K material so that the semiconductor device has predictable and consistent performance, which is not possible if the high-K material has unpredictable dimensions.