Abstract:
The invention relates to a method of forming a phosphor film and a method of manufacturing an LED package incorporating the same. The method of forming a phosphor film includes mixing phosphor and light-transmitting beads in an aqueous solvent such that the nano-sized light-transmitting beads having a first charge are adsorbed onto surfaces of phosphor particles having a second charge. The method also includes coating a phosphor mixture obtained from the mixing step on an area where the phosphor film is to be formed, and drying the coated phosphor mixture to form the phosphor film. The invention further provides a method of manufacturing an LED package incorporating the method of forming the phosphor film.
Abstract:
A method of fabricating a micro lens, the method including: forming a photo-sensitive film on a substrate; placing a photo mask at a predetermined distance from a top of the photo-sensitive film; exposing the photo-sensitive film by varying an area of exposure of the photo-sensitive film so as to selectively expose three-dimensional structures of the photo-sensitive film corresponding to desired micro lenses; and developing the photo-sensitive film such that the exposed three-dimensional structures remain. Also, there is provided a method of fabricating a master for a micro lens, in which a master material is applied on the photo-sensitive film with the three-dimensional structures to form a master having the three-dimensional structures transferred thereonto.
Abstract:
Provided is a method of manufacturing a high-power LED package, the method including the steps of: preparing a mold having an irregularity pattern; providing a transparent resin solid having an irregularity pattern provided on the surface thereof by using the mold; preparing an irregularity film with the irregularity pattern by cutting a portion of the transparent resin solid; preparing an LED package structure having a cavity in which an LED chip is mounted; filling transparent liquid resin into the cavity having the LED chip mounted therein; mounting the irregularity film on the transparent liquid resin such that the irregularity film projects from the cavity at a predetermined height; and curing the transparent liquid resin having the irregularity film mounted thereon. The irregularity pattern of the irregularity film projects from the cavity at a predetermined height.
Abstract:
A method of fabricating a micro lens, the method including: forming a photo-sensitive film on a substrate; placing a photo mask at a predetermined distance from a top of the photo-sensitive film; exposing the photo-sensitive film by varying an area of exposure of the photo-sensitive film so as to selectively expose three-dimensional structures of the photo-sensitive film corresponding to desired micro lenses; and developing the photo-sensitive film such that the exposed three-dimensional structures remain. Also, there is provided a method of fabricating a master for a micro lens, in which a master material is applied on the photo-sensitive film with the three-dimensional structures to form a master having the three-dimensional structures transferred thereonto.
Abstract:
The present invention relates a manufacturing method for a multilayered piezoelectric/electrostrictive ceramic actuator by a sintering process at low temperature. The present invention makes feasible a high quality image and high speed printing, as large displacement and high speed actuation are feasible because it can get greater displacement and driving speed, even with small variation in driving voltage, because of piezoelectric/electrostrictive layer and upper electrode being alternately heaped to produce a multilayer structure.
Abstract:
A manufacturing method for a multilayered piezoelectric/electrostrictive ceramic actuator by sintering process at low temperature, making feasible a high quality image and high speed printing, as large displacement and high speed actuation are feasible because it can get greater displacement and driving speed, even with small variation in driving voltage, because of piezoelectric/electrostrictive layer and upper electrode being alternately heaped to produce a multilayer structure.
Abstract:
Provided are a constraining green sheet and a method of manufacturing a multi-layer ceramic substrate. The constraining green sheet includes a first constraining layer and a second constraining layer. The first constraining layer has a side to be disposed on a multi-layer ceramic laminated structure and is formed of a first inorganic powder having a first particle diameter. The second constraining layer is disposed on top of the first constraining layer and is formed of a second inorganic powder having a second particle diameter larger than the first particle diameter. The second constraining layer is equal to or lower than the first constraining layer in terms of powder packing density. A shrinkage suppression rate can be increased and a de-binder passage can be secured in a firing process of the ceramic laminated structure by using the constraining green sheet formed of inorganic powders having different density and particle diameter.
Abstract:
Provided are a glass composition, a dielectric composition and a multi-layer ceramic capacitor embedded low temperature co-fired ceramic substrate using the same. The multi-layer ceramic capacitor embedded low temperature co-fired ceramic substrate is sinterable at a low temperature while showing a high dielectric constant. The glass composition includes a composition component expressed by a composition formula of aBi2O3-bB2O3-cSiO2-dBaO-eTiO2, where a+b+c+d+e=100, and a, b, c, d, and e are 40≦a≦89, 10≦b≦50, 1≦c≦20, 0≦d≦10, and 0≦e≦10, respectively.
Abstract translation:提供一种玻璃组合物,电介质组合物和使用其的多层陶瓷电容器嵌入式低温共烧陶瓷基板。 多层陶瓷电容器嵌入式低温共烧陶瓷基板在低温下可烧结,同时显示高介电常数。 该玻璃组合物包含由Bi 2 O 3 -bB 2 O 3 -cSiO 2 -dBaO-eTiO 2的组成式表示的组成成分,其中a + b + c + d + e = 100,a,b,c,d和e为40& a≦̸ 89,10≦̸ b≦̸ 50,1≦̸ c≦̸ 20,0≦̸ d≦̸ 10和0≦̸ e≦̸ 10。
Abstract:
The present invention provides a field emitter electrode and a method for fabricating the same. The method comprises the steps of mixing a carbonizable polymer, carbon nanotubes and a solvent to prepare a carbon nanotube-containing polymer solution, electrospinning (or electrostatic spinning) the polymer solution to form a nanofiber web layer on a substrate, stabilizing the nanofiber web layer such that the polymer present in the nanofiber web layer is crosslinked, and carbonizing the nanofiber web layer such that the crosslinked polymer is converted to a carbon fiber.
Abstract:
In a method of manufacturing a non-shrinkage ceramic substrate, a ceramic laminated structure, which is formed of a plurality of laminated green sheets each having an interconnecting pattern and has an external electrode formed on at least one of a top and bottom thereof, is prepared. A metal layer is formed to cover at least a portion of the external electrode. A constraining green sheet is disposed on at least one of the top and bottom of the ceramic laminated structure to suppress a planar shrinkage of the green sheets. The ceramic laminated structure is fired at the firing temperature of the green sheets to oxidize the metal layer. The constraining green sheet and a metal oxide layer, which is formed by oxidizing the metal layer, are removed. Accordingly, an electrode post-firing process can be omitted and the adhering strength between the electrode and the ceramic laminated structure can be increased.