Abstract:
A changeable liquid lens array and a method of manufacturing the same. The changeable liquid lens array includes a substrate, a plurality of partition walls arrayed on the substrate and having a fluid travel path, cells defined by the plurality of partition walls, a first fluid comprised in the cells, a second fluid arranged on the first fluid, a first electrode arranged on at least one side surface of each of the partition walls, and a second electrode disposed to be separate from the partition walls. A shape of an interface between the first fluid and the second fluid changes based on a voltage that is applied to the first electrode and the second electrode.
Abstract:
In one embodiment, the electrowetting device includes a first medium; a second medium that is not mixed with the first medium and has a refractive index different from a refractive index of the first medium; an upper electrode that adjusts an angle of a boundary surface between the first medium and the second medium; and a barrier wall that has a side surface surrounding the first and second mediums, allows the upper electrode to be disposed on a portion of the side surface, and has irregular widths.
Abstract:
A three-dimensional (3D) image display apparatus and method are provided. The 3D image display apparatus includes an image generating unit configured to generate an image, an active optical device configured to change a propagation path of light containing the generated image, and provide the generated image to multiple viewpoints that are located along a first direction parallel to the image generating unit, and a varifocal lens configured to vary a focal position of the generated image along a second direction away from the image generating unit.
Abstract:
A 3D image display apparatus is provided. The 3D image display apparatus includes a light emission unit including one or more cells, the cells being configured to respectively adjust a direction in which light is emitted, an active prism array on the light emission unit, the active prism array including one or more prism units corresponding to the cells, the active prism array being configured to adjust an inclination of a refracting surface of each of the prism units according to an electric signal to change an optical path, and a display panel configured to modulate light that passes through the active prism array according to an image signal to form an image.
Abstract:
A method and apparatus for displaying three dimensional (3D) images are provided. The display apparatus includes a backlight unit which emits light, an image panel which includes plurality of pixels for modulating the light from the backlight unit to form a gray scaled image, an electrowetting lens unit which includes first electrowetting lenses arranged to correspond to the plurality of pixels in the image panel and second electrowetting lenses arranged opposite to the first electrowetting lenses, wherein at least two of the first electrowetting lenses and at least one of the second electrowetting lenses may be arranged opposite each other; and a controller which controls the electrowetting lens unit to separate beams exiting from the image panel into at least two viewing zones in a 3D image display mode.
Abstract:
An apparatus for manufacturing a display panel includes an arriving part in which an unfinished display panel is disposed. The apparatus has at least one light transmitting part, a mold which is positioned on the arriving part and which includes at least one alignment key and a pattern forming part, a mold driver which drives the mold, and an alignment sensor which is positioned under the arriving part and which determines whether the display panel and the mold are erroneously aligned through the light transmitting part. Therefore, it is possible to efficiently and accurately pattern a specific material onto the display panel through an imprint lithography process using a pressing mold.
Abstract:
A multi-view point 3D display apparatus using an active optical device is provided. The active optical device may change a path of light without a substantial drop of image resolution.
Abstract:
A mold for a display device, comprising a supporting frame; at least one pattern forming part provided on a surface of the supporting frame; and a protrusion projecting from the supporting frame and disposed along the circumference of the pattern forming part, an inside wall of the protrusion toward the pattern forming part standing upright from the surface of the supporting frame.
Abstract:
A backlight unit of a three-dimensional (3D) display has a plurality of cells and a 3D image is formed by adjusting directions of light emitted from the cells. The backlight unit includes an emission unit that adjusts an emission direction of light from a cell with respect to other cells. The backlight unit divides view areas to provide left-eye and right-eye images, thereby generating a 3D image.
Abstract:
A method for manufacturing a lens forming master includes coating an organic insulation material on a substrate to form an organic insulation layer, removing a portion of the organic insulation layer with a laser which is irradiated through a first mask to form a lens shape on a surface of the organic insulation layer, and removing portions of the organic insulation layer with a laser irradiated through a second mask to form a contact hole and a bank area in the organic insulation layer.