Abstract:
Methods and corresponding systems for buffering an input signal include outputting a first logic value in response to the input signal being below a lower threshold. A second logic value is output in response to the input signal rising above the lower threshold. Thereafter, the second logic value is maintained until the input exceeds a higher threshold and thereafter falls below the higher threshold. In response to the input signal falling below the higher threshold, the first logic value is output, and maintained at the first logic value, until the input falls below the lower threshold and thereafter rises above the lower threshold.
Abstract:
An input voltage circuit comprises an input transistor having a control electrode for receiving a variable input voltage, a voltage detection transistor having a current electrode coupled to a current electrode of the input transistor forming a first node, and a current source coupled to a second current electrode of the voltage detection transistor forming a second node. The input voltage circuit further comprises a variable voltage drop transistor having a first current electrode coupled to the first node, a control electrode coupled to the second node and a second current electrode coupled to an output node, wherein the voltage detection transistor detects a variation in the variable input voltage and provides a signal to the variable voltage drop transistor. The variable voltage drop transistor generates a voltage drop proportional to the variation in the variable input voltage to ensure a substantially constant output at the output node.
Abstract:
A level shifter with cross coupled inverters having different threshold voltages. The output of the level shifter is pulled to a known voltage state during power up. In some examples, one of the inverters includes an additional N-channel transistor wherein the threshold voltage is greater the threshold voltage of the other inverter due to the additional transistor.
Abstract:
A sigma delta modulator (10) for use in codec applications provides dynamic range adjustment and avoids asymmetrical signal clipping. The modulator (10) has a summing circuit that sums a plurality of inputs, one of which is a dither component. The dither is programmably modifiable to provide enhanced performance. The dither is provided by a pseudo random number generator (100). The pseudo random number generator (100) has an n-bit shift register (106) coupled to a last code detect (108) to detect the end of a pseudo random number sequence. At that time, a new preset code can be loaded (110) into the shift register (106) to provide different dither characteristics. This allows the pseudo random number generator (100) to programmably determine the percentage of ones and zeros to add to the output signal. The dither output can be inverted (104) to shift the dither up or down.
Abstract:
The rise time of a voltage Vo presented to a load, based on an input voltage Vi provided via an RC filter coupled to the load for removing higher frequency noise on Vo, is substantially reduced by providing a sensor circuit with differential inputs Vi, Vo. The sensor circuit drives a charger circuit coupled to a DC potential and the load so that rapid charging of C to Vo does not depend on R. As Vo approaches Vi, the sensor circuit deactivates the charger circuit to stop further charging and a latch coupled to the sensor circuit shuts off the sensor circuit to reduce power consumption while (Vo.about.Vi)>0. A current mirror buffer is desirably included between the sensor output and the latch for level shifting.
Abstract:
A delay line having feedback from a control circuit at the output of the delay line controls the delay line duty cycle to within a specified range. The delay line comprises at least one delay unit having control inputs to each delay unit. The output of the delay line feeds to a low-pass filter (LPF). A voltage proportional to the duty cycle of the delay line output is generated within the LPF and fed to a differential amplifier. The differential amplifier is in turn coupled to the control inputs of each of the delay units. When the voltage signal from the LPF is high (duty cycle is high), the differential amplifier will generate a signal causing the fall time of the signal propagating through the delay line to increase and rise time to decrease. This will decrease the high cycle time at the output of the delay line. When the voltage signal from the LPF is low (duty cycle is low), the differential amplifier will generate a signal causing the fall time to decrease and the rise time to increase. This will increase the high cycle time at the output of the delay line.
Abstract:
A differential amplifier avoids gain fluctuations due to process differences and changes in temperature and allows adjustability of the gain and associated frequency characteristics to desired gain values. The amplifier comprises a pair of load transistors coupled to a pair of differential input transistors. A pair of biased current source transistors assure a constant current through the differential transistors, and a pair of bias transistors supply a constant bias to the source of the load transistors. The gain is varied by varying the voltage supplied to the gates of the two load transistors. The voltage supplied to the load transistors is varied by varying the current supplied through a second pair of bias transistors. A number of current source transistors coupled in parallel vary the voltage through the second pair of bias transistors.
Abstract:
An adaptive variable length pulse synchronizer including a state keeper circuit, an asynchronous pulse edge detection circuit, a data synchronization circuit, and a pulse edge synchronization circuit. The state keeper circuit detects a leading edge of the asynchronous pulse. The asynchronous pulse edge detection circuit detects a trailing edge of the asynchronous pulse after the state keeper circuit has detected the leading edge. The asynchronous pulse edge detection circuit further provides a pulse synchronized with a clock signal after the asynchronous pulse has been detected. The data synchronization circuit latches the asynchronous data and provides the synchronous data in response to the synchronous pulse. The pulse edge synchronization provides the synchronous ready signal after synchronous data has been provided. In one embodiment, the synchronous pulse occurs between successive rising edges of the clock whereas the synchronous ready signal is provided in response to the intermediate falling edge of the clock.
Abstract:
A circuit includes first, second, and third inverters and first and second transistors. The first inverter has an input, an output, a first supply terminal, and a second supply terminal. The second inverter has an input, an output, a first supply terminal, and a second supply terminal. The first transistor has a first current electrode for receiving a first supply voltage, a control electrode coupled to the output of the first inverter, and a second current electrode coupled to the first supply terminals of both the first and second inverters. The second transistor has a first current electrode coupled to the second supply terminals of the first and second inverters, a control electrode coupled to the output of the first inverter, and a second current electrode for receiving a second supply voltage. The third inverter has an input coupled to the output of the second inverter, and an output coupled to the output of the first inverter.
Abstract:
A circuit's performance may vary based on various factors such as, for example, process, voltage, and/or temperature. In one embodiment, a circuit includes an input terminal which receives an input signal, a delay selection section which delays the input signal by a delay amount selected by a performance variation indicator, an impedance selection section which outputs the delayed input signal as a compensated delayed signal, where the impedance selection section uses a driver impedance amount selected by the performance variation indicator, and an output terminal which outputs the compensated delayed signal. The circuit may also include a ring oscillator, a frequency counter which provides a count value which indicates a number of rising edges of an output of the ring oscillator which occur during a period of a reference frequency, and a decoder which uses the count value to output the performance variation indicator.