Abstract:
A reflection-type liquid crystal display according to the invention includes two glass substrates, a transparent electrode provided on one glass substrate, an insulator film which is provided on another glass substrate and on which an uneven structure is formed, a reflecting electrode provided on the insulator film, and a liquid crystal layer sandwiched between a side of the transparent electrode and a side of the reflecting electrode. The insulator film includes a first insulating layer in which a large number of depressions isolated as surrounded by protrusions are irregularly arranged and a second insulating layer covering the insulating layer entirely. The protrusions are all connected in a network, so that if some of these protrusions have weaker adherence with an underlying layer, they can be supported by the surrounding protrusions.
Abstract:
A liquid crystal display device includes a first substrate including a thin film transistor, a data line, a pixel electrode, and a common electrode, a second substrate, and liquid crystal sandwiched between the first and second substrates, wherein an image signal is applied to the thin film transistor through the data line to generate an electric field between the pixel electrode receiving the image signal and the common electrode such that the liquid crystal is rotated by the electric field in a plane which is in parallel with the first substrate. The first substrate includes an electrically insulating inorganic film covering the data line therewith, a first island-shaped electrically insulating organic film formed on the electrically insulating inorganic film above the data line, and a shield common electrode covering the first island-shaped electrically insulating organic film therewith and overlapping the data line when viewed vertically.
Abstract:
In an active matrix type liquid crystal display device in which a common electrode and a second pixel electrode have portions opposing each other, and an electric field parallel to substrates is formed between the two electrodes, Y direction extending portions of the common electrode are provided above data lines via a second interlayer insulation film. Slits are opened in the Y direction extending portions of the common electrode along the data lines. Portions of a black matrix which are set to a common electric potential with the common electrode are provided on an opposing substrate at positions opposing the slits.
Abstract:
A LCD device includes a housing including a front housing member and a rear housing member coupled by a coupling member, a panel unit mounted on the front housing member, a backlight having a plurality of optical components consecutively mounted on the panel unit. The coupling member is bent at a right angle for allowing the rear housing member to oppose the front housing member and to cover the lateral and rear sides of the panel unit and the backlight as a whole.
Abstract:
An active matrix liquid crystal display device which has color filters disposed on a TFT (Thin-Film Transistor) substrate, and which reduces the effect of light leakage regions over data lines for an increased viewing angle. The liquid crystal display device has the data lines disposed on the TFT substrate at respective gaps between adjacent two of pixel electrodes, for supplying data signals to TFTs to drive pixel electrodes, and a black matrix disposed on the TFT substrate in association with the data lines for blocking light passing in a predetermined viewing angle range through a light leakage region created in the liquid crystal layer depending on a potential difference between adjacent two of the pixel electrodes.
Abstract:
A combined wet etching method for stacked films which is capable of performing etching processes in a collective manner while controlling an amount of side-etching on each of stacked films and of making uniform side edges. In the wet etching method, two or more types of etching methods are performed in combination, on stacked films containing first and second films being deposited sequentially on a substrate and each having a different film property. The two or more types of wet etching methods include, at least, a first wet etching method in which side-etching on the first film is facilitated more than side-etching on the second film and a second wet etching method in which side-etching on the second film is facilitated more than side-etching on the first film.
Abstract:
A reflector for a reflection-type LCD device is provided, which reflects efficiently incident light to the viewer's side and that suppresses the change of color tone. The reflector comprises a roughened surface having a protrusion pattern. The protrusion pattern gives inclination angle to the surface according to a specific distribution where a first component with an inclination angle value of 0null is 15% or less in area and a second component with an inclination angle value from 2null to 10null is 50% or greater in area. The protrusion pattern gives a variation range of chromaticity coordinates (x, y) on a chromaticity diagram dependent on an angle of view. The variation range is limited in a circle on the chromaticity diagram. The circle has a radius of approximately 0.05 and a center at a point corresponding to white color.
Abstract:
An active matrix liquid crystal display device operates such that the polarity of a voltage on a common electrode 30 is inverted by row or by frame. A charge collection/resupply circuit includes a switch connected between the common electrode and a common voltage output buffer, a charge collection capacitor, and a switch connected between a connection point of the common electrode and the switch and the charge collection capacitor. The switch control unit is configured to operate such that immediately before a polarity of a common voltage VCOM10 is inverted, the switch 11 is turned off and then the switch 12 is turned on, and further, after inversion of the polarity of the common voltage VCOM, the switch is turned off and then the switch is turned on.
Abstract:
Prior to converting a non-single crystal material of a semiconductor film into a single crystal material through the use of a laser beam, at least one dopant is introduced into whole of the semiconductor film. Then, the non-single crystal semiconductor film is irradiated with a laser beam to crystallize the semiconductor film. In this case, a ratio between quasi-fermi level of the single crystal material within one of transistor formation regions used to form transistors of different conductivity types and quasi-fermi level of the single crystal material within the other thereof is made to be between 0.5:1 and 2.0:1. Thus, transistors of different conductivity types are formed in the crystallized semiconductor film.
Abstract:
A light-reflection type liquid crystal display device includes (a) a liquid crystal display panel, (b) a polarizer mounted on the liquid crystal display panel, (c) a light-guide mounted on the polarizer, (d) a light source arranged adjacent to an end of the light-guide for supplying light to the liquid crystal display panel through the light-guide, (e) an operation panel mounted above the light-guide for operating the light-reflection type liquid crystal display device, (f) a chassis for supporting the liquid crystal display panel therewith, (g) a frame covering the light source therewith, the frame having an opening facing the light-guide, and (h) a shield coupled to the chassis and covering the light-guide therewith except a portion of the light-guide facing the light source, the shield cooperating with the frame to support the operation panel therewith.