Abstract:
This disclosure concerns embodiments of an annealing device and a method for annealing flowable, finely divided solids, such as annealing granular silicon to reduce a hydrogen content of the granular silicon. The annealing device comprises at least one tube through which flowable, finely divided solids are flowed downwardly. The tube includes a heating zone and (i) a residence zone below the heating zone, (ii) a cooling zone below the heating zone, or (iii) a residence zone below the heating zone and a cooling zone below the residence zone. An inert gas is flowed upwardly through the tube. The tube may be constructed from two or more tube segments. The annealing device may include a plurality of tubes arranged and housed within a shell. The annealing device and method are suitable for a continuous process.
Abstract:
Reaction chamber liners for use in a fluidized bed reactor for production of polysilicon-coated granulate material are disclosed. The liners include an aperture and a cavity configured to receive a reactor component, such as a probe, a sensor, a nozzle, a feed line, a sampling line, a heating/cooling component, or the like. In some embodiments, the liner is a segmented liner comprised of vertically stacked or laterally joined segments, wherein at least one segment includes an aperture and a cavity configured to receive a reactor component.
Abstract:
Fine particulate material is separated from a mixture of coarse particulate material and fine particulate material by passing sweep gas through the chamber of a rotating tumbler drum that contains an introduced material that is a mixture of coarse particulate material and fine particulate material. In particular, polysilicon powder may be separated from granular polysilicon. Seals are present, at locations where gas-conveying parts of the apparatus move relative to one another, to block the escape of sweep gas to the atmosphere surrounding the apparatus. A downstream seal extends between a stationary exhaust duct and an exhaust tube that rotates with the tumbler drum. The seal is protected by a flow of clean flush gas that is delivered to a gap between the exhaust duct and the exhaust tube.
Abstract:
Embodiments of a probe assembly for a fluid bed reactor are disclosed. The probe assembly includes a fluid bed reactor (FBR) member, and a pressure tap comprising a wall defining a passageway within which the FBR member is located. Exemplary FBR members include, but are not limited to, a thermocouple, a seed pipe, a particle sampling line, a gas sampling line, a gas feed line, a heater, a second pressure tap, or a combination thereof. Disclosed embodiments of the probe assembly reduce or eliminate the need for support rods and rings within the fluid bed reactor, reduce component fouling within the reactor, and/or reduce product contamination.
Abstract:
Embodiments of a method for reducing iron silicide and/or iron phosphide fouling and/or corrosion in a hydrochlorosilane production plant are disclosed. Sufficient trichlorosilane is included in a silicon tetrachloride process stream to minimize hydrogen chloride formation, thereby inhibiting iron (II) chloride formation and reducing iron silicide and/or iron phosphide fouling, superheater corrosion, or a combination thereof.
Abstract:
Silane and hydrohalosilanes of the general formula HySiX4-y (y=1, 2, or 3) are produced by reactive distillation in a system that includes a fixed-bed catalytic redistribution reactor that can be back-flushed during operation.
Abstract:
Segmented silicon carbide liners for use in a fluidized bed reactor for production of polysilicon-coated granulate material are disclosed, as well as methods of making and using the segmented silicon carbide liners. Non-contaminating bonding materials for joining silicon carbide segments also are disclosed. One or more of the silicon carbide segments may be constructed of reaction-bonded silicon carbide.
Abstract:
Apparatus and methods for consolidating granular silicon and determining trace elements content of the consolidated silicon are disclosed. Silicon granules are placed in a vessel, and a silicon slug of known purity is embedded at least partially in the granules. The slug is preheated to a temperature sufficient to couple with an induction heater. As the silicon slug melts, silicon granules adjacent the molten silicon also melt. The vessel passes through an induction coil to successively inductively heat and melt regions of the silicon granules from the leading end to the trailing end with each region solidifying as the molten silicon exits the induction coil to provide a multicrystalline silicon ingot. The multicrystalline silicon ingot is sliced into wafers, which are analyzed by low-temperature Fourier transform infrared spectroscopy to determine levels of trace elements in the ingot.
Abstract:
Embodiments of a probe assembly for a fluid bed reactor are disclosed. The probe assembly includes a fluid bed reactor (FBR) member, and a pressure tap comprising a wall defining a passageway within which the FBR member is located. Exemplary FBR members include, but are not limited to, a thermocouple, a seed pipe, a particle sampling line, a gas sampling line, a gas feed line, a heater, a second pressure tap, or a combination thereof. Disclosed embodiments of the probe assembly reduce or eliminate the need for support rods and rings within the fluid bed reactor, reduce component fouling within the reactor, and/or reduce product contamination.
Abstract:
A method of controlling particle additions to a fluidized bed reactor includes measuring pressure fluctuations inside the fluidized bed reactor over a selected time period, determining a pressure parameter indicative of amplitudes of the pressure fluctuations, comparing the pressure parameter to a specified threshold, and controlling particle additions to the fluidized bed reactor when the pressure parameter deviates from the specified threshold.