Abstract:
A wafer level packaging cap for covering a device wafer with a device thereon and a fabrication method thereof are provided. The method includes operations of forming a plurality of connection grooves on a wafer, forming a seed layer on the connection grooves, forming connection parts by filling the connection grooves with a metal material, forming cap pads on a top surface of the wafer to be electrically connected to the connection parts, bonding a supporting film with the top surface of the wafer on which the cap pads are formed, forming a cavity on a bottom surface of the wafer to expose the connection parts through the cavity, and forming metal lines on the bottom surface of the wafer to be electrically connected to the connection parts.
Abstract:
There are provided an organic light emitting diode and a method of manufacturing the same. The organic light emitting diode includes: an anode formed on a substrate; a protective layer having at least one inorganic material layer stacked therein, the at least one inorganic material layer containing at least one of a nano-clay and a graphite oxide; a light emitting polymer layer formed on the protective layer; and a cathode formed on the light emitting polymer layer. In the case of the organic light emitting diode, the injection concentration of holes may be controlled, such that the stability of an element may be improved and the lifespan thereof may be increased.
Abstract:
Disclosed herein is a method for forming a pattern on a printed circuit board (PCB), including: printing a metallic material on a board through a plurality of nozzles; and sintering the metallic material with extra power from power for driving the plurality of nozzles to form a circuit pattern, whereby the circuit pattern can be easily formed.
Abstract:
Disclosed herein is a specimen conveyance apparatus including: a main body having a plate-like shape and including a storage chamber having a recess-like shape formed thereon; a cover member covering the main body; a sealing member inserted between the main body and the cover member and blocking the storage chamber and the outside; a suction pipe installed within the main body, having a suction valve, and sucking external air; a filter installed within the main body, removing a reactive gas and particulate foreign material from air sucked through the suction pipe, and allowing an inert gas to pass therethrough toward the storage chamber; a discharge pipe installed within the main body, having a discharge valve, and discharging a gas to the outside; and a pump discharging a gas present in the storage chamber to the outside through the discharge pipe.
Abstract:
Disclosed herein is an apparatus for separation and condensation of a mixture. The apparatus for separation and condensation of a mixture includes: a base part: a sample vaporizing unit mounted on the base part, and vaporizing the stored sample; a collecting unit mounted on the base part, in order to collect the sample; a driver moving the collecting unit pass; and a control device controlling the sample vaporizing unit to vaporize the sample and controlling the driver to move the collecting unit, whereby a small amount of mixture can be separated automatically.
Abstract:
The present invention relates to a method for manufacturing quantum dots including mixing a Group II metal precursor and a natural oil and increasing temperature thereof and adding a Group VI chalcogenide precursor to the mixed solution and increasing temperature thereof. According to the present invention, use of a natural oil, instead of any artificially synthesized surfactant, allows mass production of eco-friendly quantum dots.
Abstract:
A wafer level packaging cap for covering a device wafer with a device thereon and a fabrication method thereof are provided. The method includes operations of forming a plurality of connection grooves on a wafer, forming a seed layer on the connection grooves, forming connection parts by filling the connection grooves with a metal material, forming cap pads on a top surface of the wafer to be electrically connected to the connection parts, bonding a supporting film with the top surface of the wafer on which the cap pads are formed, forming a cavity on a bottom surface of the wafer to expose the connection parts through the cavity, and forming metal lines on the bottom surface of the wafer to be electrically connected to the connection parts.
Abstract:
A micro package, a multi-stack micro package, and a manufacture method therefor are provided. A micro package according to the present invention includes a device substrate for mounting a devices, being a circuit module; a protection cap for protecting the device; bonding substances which, formed by patterning on predetermined areas on the device substrate, bond the device substrate and the protection cap; layers formed on a portion of the device substrate and a portion of the protection cap and exterior sides of the bonding substances; vias which are formed by etching away another portion of the protection cap, and electrically connected to an upper surface of the device substrate through the bonding substances; under barrier metals (UBMs) formed on the vias; and solder bumpers, being connection terminals for an external signal, formed on the UBMs. As stated above, the present invention has advantages of guaranteeing the hermetical sealing since the above layers prevent moisture absorption from outside at the same time of lowering possibility of damages to the device inside the package since the processing temperature drops below 150° upon wafer bonding due to the use of the polymer substance as a bonding substance.
Abstract:
A micro package, a multi-stack micro package, and a manufacture method therefor are provided. A micro package according to the present invention includes a device substrate for mounting a devices, being a circuit module; a protection cap for protecting the device; bonding substances which, formed by patterning on predetermined areas on the device substrate, bond the device substrate and the protection cap; layers formed on a portion of the device substrate and a portion of the protection cap and exterior sides of the bonding substances; vias which are formed by etching away another portion of the protection cap, and electrically connected to an upper surface of the device substrate through the bonding substances; under barrier metals (UBMs) formed on the vias; and solder bumpers, being connection terminals for an external signal, formed on the UBMs. As stated above, the present invention has advantages of guaranteeing the hermetical sealing since the above layers prevent moisture absorption from outside at the same time of lowering possibility of damages to the device inside the package since the processing temperature drops below 150° upon wafer bonding due to the use of the polymer substance as a bonding substance.
Abstract:
Disclosed herein is a nano-patterning system including a nano-patterning apparatus. The nano-patterning apparatus includes: a holder unit including a transfer unit and an insulating unit; a tip unit inserted into the holder unit, downwardly protruded, and having a flow channel; a flow path having one end connected to the flow channel through one side of the transfer unit or the insulating unit and extending to the outside to serve as a movement path allowing a nano-patterning material to move therealong; a pressing unit pressing the nano-patterning material at one side of the flow path; and a storage unit connected to the other end of the flow path and storing the nano-patterning material.