摘要:
A metallization method for forming multilevel interconnect is disclosed. The method includes firstly providing a first conductor layer on which there is a dielectric layer. A glue layer is then formed on the dielectric layer, followed by forming an opening from top surface of the glue layer to the first conductor layer. After forming a barrier layer on the glue layer and all surfaces in the opening, a second conductor is formed on the barrier layer and fills the opening. Subsequently, the second conductor layer and the barrier layer are removed until the glue layer exposes. A third conductor is defined on the glue layer and the second conductor. The product will solve the problem of high via resistivity caused by stripping solvent and etchant.
摘要:
A method described for removing a photoresist/polymers layer on a substrate. The method comprises the steps of providing a wafer having an oxide layer, a photoresist/polymers layer, an opening penetrating through the photoresist/polymers layer and the oxide layer, and the sidewall polymer on the surface of photoresist layer and the oxide layer. An in-situ plasma-etching step using an additional gas mixed with oxygen as source is performed to remove the photoresist/polymers layer without residues, no damages to substrate and oxide and no changes on the critical dimension of the opening during etching step.
摘要:
A method for forming a high aspect ration (HAR>4:1) borderless contact hole is described. The method forms a contact/via hole in the silicon oxide layer by performing an etching process with an etchant, C4F8/C2F6,/Ar/CO or C4F8/Ar/CO, on an etcher. The etcher includes a ring, a roof, a chiller and a chamber. The etchant used in the etching process is controlled under conditions including a C4F8 flow of about 10 to 20 sccm, a CO flow of about 1 to 100 sccm, and an Ar flow of about 100 to 500 sccm. The flow of C2F6 is about 0.5 to 1.5 times that of C4F8. The conditions of the etcher include a roof temperature of about 150 to 300° C., a chiller temperature of about −20 to 20° C., a wall temperature of about 150 to 400° C., a ring temperature of about 150 to 400° C., and a pressure within the chamber of about 4 to 50 mtorr. By controlling the chamber pressure and the deposition rate of the polymer molecules, a properly profiled contact hole is obtained.
摘要翻译:描述了形成高纵横比(HAR> 4:1)无边界接触孔的方法。 该方法通过在蚀刻剂上用蚀刻剂C 4 F 8 / C 2 F 6,/ Ar / CO或C 4 F 8 / Ar / CO执行蚀刻处理来形成氧化硅层中的接触/通孔。 蚀刻器包括环,屋顶,冷却器和室。 在蚀刻工艺中使用的蚀刻剂在约10至20sccm的C 4 F 8流量,约1至100sccm的CO流量和约100至500sccm的Ar流量的条件下进行控制。 C2F6的流量约为C4F8的0.5〜1.5倍。 蚀刻器的条件包括约150至300℃的屋顶温度,约-20至20℃的冷却器温度,约150至400℃的壁温度,约150至400℃的环境温度 400℃,室内的压力为约4至50毫托。 通过控制室压力和聚合物分子的沉积速率,获得适当的异型接触孔。
摘要:
A simplified method is disclosed for etching low k organic dielectric film. A substrate is provided with a hardmask layer and low k organic dielectric layer formed thereon in which hardmask layer is on the dielectric layer. A layer of photoresist is formed on the hardmask layer and imaged with a pattern by exposure through a dark field mask. As a key step, the pattern is transferred into the hardmask layer by dry etching and then the photoresist is stripped in-situ. Then, the interconnect is formed by using dry etching the low k organic dielectric layer using the hardmask layer as a mask, and readying it for the next semiconductor process.
摘要:
A method for forming a contact hole in a silicon oxide layer formed over a silicon nitride layer and a substrate performs an etching process with an etchant, C4F8/Ar or C4F8/C2F6/Ar, on an inductively coupled plasma etcher. The inductively coupled plasma etcher contains a chamber, a ring, and a roof. The etchant used in the etching process is controlled by conditions that include a C4F8 flow of about 10 to 20 sccm, a CO flow of less than about 100 sccm, and an Ar flow of about 50 to 500 sccm. In the meantime, the conditions of the inductively coupled plasma etcher include a roof temperature of about 150 to 300 ° C., a ring temperature of about 150 to 400 ° C., and a pressure within the chamber of about 4 to 50 mtorr. By performing a plasma etching process under the foregoing conditions, a properly profiled contact hole is obtained.
摘要:
The present invention relates to a method of forming a contact hole on the semiconductor wafer. The semiconductor wafer comprises, in ascending order, a substrate, a silicon nitride layer, a silicon oxide layer, and a photo-resist layer. There is a hole in the photo-resist layer. The method comprises: (1) performing a first anisotropic etching process in a downward direction to remove the silicon oxide layer under the hole down to the surface of the silicon nitride layer to form a recess; (2) performing an in-situ plasma cleaning process to entirely remove the polymer material remaining at the bottom of the recess; (3) performing an in-situ second anisotropic etching process in a downward direction to remove the silicon nitride layer from the bottom of the recess down to the surface of the substrate to form the contact hole; (4) performing another in-situ cleaning process to entirely remove the polymer material remaining at the bottom of the contact hole.
摘要:
A method for fabricating a patterned structure in a semiconductor device is provided. First, a substrate with a first region and a second region is provided. Then, a plurality of sacrificial patterns is respectively formed within the first region and the second region. A first spacer is then formed on the sidewalls of each of the sacrificial patterns followed by forming a mask layer to cover the sacrificial patterns located within the first region. Finally, the first spacer exposed from the mask layer is trimmed to be a second spacer and the mask layer is then removed.
摘要:
The present invention provides a method of forming a trench in a semiconductor substrate. First, a first patterned mask layer is formed on a semiconductor substrate. The first patterned mask layer has a first trench. Then, a material layer is formed along the first trench. Then, a second patterned mask layer is formed on the material layer to completely fill the first trench. A part of the material layer is removed when the portion of the material layer between the second patterned mask layer and the semiconductor substrate is maintained so as to form a second trench. Lastly, an etching process is performed by using the first patterned mask layer and the second patterned mask layer as a mask.
摘要:
A method of fabricating a double-gate transistor and a tri-gate transistor on a common substrate, in which, a substrate includes a first fin structure covered with a first mask layer and a second fin structure covered with a second mask layer, the first mask layer is removed, a gate material layer is formed and covers the first fin structure and the second mask layer, the gate material layer is patterned to result in a tri-gate structure covering the first fin structure and a double-gate structure covering the second fin structure and the second mask layer, and a source and a drain are formed in each of these two fin structures each at two sides of the gates.
摘要:
A method of fabricating a double-gate transistor and a tri-gate transistor on a common substrate, in which, a substrate includes a first fin structure covered with a first mask layer and a second fin structure covered with a second mask layer, the first mask layer is removed, a gate material layer is formed and covers the first fin structure and the second mask layer, the gate material layer is patterned to result in a tri-gate structure covering the first fin structure and a double-gate structure covering the second fin structure and the second mask layer, and a source and a drain are formed in each of these two fin structures each at two sides of the gates.