Bonded Abrasive Articles Including Oriented Abrasive Particles, and Methods of Making Same

    公开(公告)号:US20200016725A1

    公开(公告)日:2020-01-16

    申请号:US16335402

    申请日:2017-10-10

    Abstract: The present disclosure provides bonded abrasive articles including abrasive particles retained in a binder. The abrasive particles are oriented at a predetermined angle greater than 0 degrees and less than 90 degrees with respect to a longitudinal axis of the bonded abrasive article. Fifty percent or more of the abrasive particles are oriented within 15 degrees above or below the angle, as measured using microscopy image analysis under magnification. The present disclosure further provides a method of making a bonded abrasive article, the method comprising sequential steps. The steps include (a) a sub-process comprising sequentially: i) depositing a layer of loose powder particles in a confined region, wherein the loose powder particles comprise matrix particles and abrasive particles; ii) spreading the layer of loose powder particles with a spreading bar or roller to provide a substantially uniform thickness, wherein a gap between the spreading bar or roller and a base plane of the confined region is selected to be shorter than an average length of the abrasive particles; and iii) selectively treating an area of the layer of loose powder particles to bond powder particles together. Step b) includes independently carrying out step a) a number of times to generate a bonded abrasive article preform including the bonded powder particles and remaining loose powder particles. Step c) includes separating remaining loose powder particles from the bonded abrasive article preform. Step d) includes heating the bonded abrasive article preform to provide the bonded abrasive article. Further, methods are provided, including receiving, by a manufacturing device having one or more processors, a digital object comprising data specifying a bonded abrasive article; and generating, with the manufacturing device by an additive manufacturing process, a bonded abrasive article preform based on the digital object. A system is also provided, including a display that displays a 3D model of a bonded abrasive article; and one or more processors that, in response to the 3D model selected by a user, cause a 3D printer to create a physical object of a bonded abrasive article preform.

    Method of making a nanostructure and nanostructured articles

    公开(公告)号:US10134566B2

    公开(公告)日:2018-11-20

    申请号:US14895693

    申请日:2014-07-23

    Abstract: A method of making a nanostructure and nanostructured articles by depositing a layer to a major surface of a substrate by plasma chemical vapor deposition from a gaseous mixture while substantially simultaneously etching the surface with a reactive species. The method includes providing a substrate; mixing a first gaseous species capable of depositing a layer onto the substrate when formed into a plasma, with a second gaseous species capable of etching the substrate when formed into a plasma, thereby forming a gaseous mixture; forming the gaseous mixture into a plasma; and exposing a surface of the substrate to the plasma, wherein the surface is etched and a layer is deposited on at least a portion of the etched surface substantially simultaneously, thereby forming the nanostructure. The substrate can be a (co)polymeric material, an inorganic material, an alloy, a solid solution, or a combination thereof. The deposited layer can include the reaction product of plasma chemical vapor deposition using a reactant gas comprising a compound selected from the group consisting of organosilicon compounds, metal alkyl compounds, meal isopropoxide compounds, metal acetylacetonate compounds, metal halide compounds, and combinations thereof. Nanostructures of high aspect ratio and optionally with random dimensions in at least one dimension and preferably in three orthogonal dimensions can be prepared.

Patent Agency Ranking