Abstract:
Multilayer damping material for damping a vibrating surface (10) including: at least one constraining layer (4); at least one dissipating layer (1, 3); at least one kinetic spacer layer (2) including multiple spacer elements (2b), the kinetic spacer layer being arranged between the constraining layer and the vibrating surface, when used for damping the vibrating surface, wherein each spacer element has opposite ends, at least one end of each of the multiple spacer elements is embedded in, bonded to, in contact with or in close proximity to the dissipating layer, such that energy is dissipated within the multilayer damping material, through movement of the at least one end of each of the multiple spacer elements; absorbing material as at least one additional layer (12) or within at least one of the above layers.
Abstract:
A film comprising stripes alternating with strands is disclosed. In some embodiments, the strands have a core and a sheath. The core is more elastic than both the sheath and the strands. In some embodiments, the film has an elongation of at least 75 percent, the width of the strands is in a range from 100 micrometers to 750 micrometers, and a portion of each strand forms part of at least one major surface of the film. An extrusion die useful for making the film and a method for making the film using the extrusion die are also disclosed.
Abstract:
Sheets comprising co-extruded multi-component arrays that exhibit chromatically variable appearance dependent upon observation angle. Also, methods and apparatus for making such sheets and methods for using such sheets.
Abstract:
Method of making at least two distinct, separate polymeric films. Embodiments of polymeric multilayer film described herein are useful, for example, for filtration or acoustic absorption.
Abstract:
A laminate of an at least partially reticulated thermoplastic film joined to an extensible carrier. The reticulated thermoplastic film includes a backing with openings and discrete elements protruding from the first major surface. There are two discrete elements aligned in a first direction abutting opposite ends of any given opening. In a second direction perpendicular to the first direction, there is one discrete element between the given opening and an adjacent opening aligned in the second direction. Each portion of the thermoplastic backing around the given opening is plastically deformed in its lengthwise direction. A method of making a laminate is also disclosed. The method includes stretching a thermoplastic backing having a plurality of discrete elements in the first direction and laminating the backing to an extensible carrier. Subsequently stretching the laminate in a second direction forms a tear in the thermoplastic backing between two adjacent of the discrete elements.
Abstract:
Netting (1101) comprising an array of polymeric strands (1102,1104), wherein the polymeric strands are periodically joined together at bond regions throughout the array, and wherein at least a plurality (i.e., at least two) of the polymeric strands have a core (1114) of a first polymeric material and a sheath (1103) of a second, different polymeric material. Nettings described herein have a variety of uses, including wound care, tapes, filtration, absorbent articles, pest control articles, geotextile applications, water/vapor management in clothing, reinforcement for nonwoven articles, self bulking articles, floor coverings, grip supports, athletic articles, and pattern coated adhesives.
Abstract:
Provided are acoustic articles having a porous layer (102,104,106) placed in contact with a heterogeneous filler comprising porous carbon and having an average surface area of from 0.1 m2/g to 10,000 m2/g. The acoustic articles can have a flow resistance of from 10 MKS Rayls to 5000 MKS Rayls. Optionally, the porous layer includes a non-woven fibrous layer or a perforated film having a plurality of apertures with an average narrowest diameter of from 30 micrometers to 5000 micrometers. The heterogeneous filler can enhance low frequency performance without significantly compromising high frequency performance, thickness or weight.
Abstract:
A coated abrasive disc includes a disc backing and an abrasive layer disposed thereon. The abrasive layer comprises abrasive elements secured to a major surface of the disc backing by at least one binder material. The abrasive elements are disposed at contiguous intersections of horizontal and vertical lines of a rectangular grid pattern. Each abrasive element has two triangular abrasive platelets, each having respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of the triangular abrasive platelets is disposed facing and proximate to the disc backing. A first portion of the abrasive elements is arranged in alternating first rows wherein the triangular abrasive platelets are disposed lengthwise aligned with the vertical lines. A second portion of the abrasive elements is arranged in alternating second rows wherein the triangular abrasive platelets are disposed lengthwise aligned with the horizontal lines. The first and second rows repeatedly alternate along the vertical lines. Methods of making and using the coated abrasive disc are also disclosed.
Abstract:
A film having first segments and second segments arranged across the film's width direction is disclosed. The first and second segments are separated from each other by polymer interfaces. The first segments include a first polymeric composition and the second segments include a second polymeric composition. At least some of the second segments are layered second segments having first and second layers in the film's thickness direction, and one of the first or second layers includes a third polymeric composition different from the second polymeric composition. An extrusion die useful for making the film and a method for making the film using the extrusion die are also disclosed.
Abstract:
Three-dimensional polymeric strand netting, wherein a plurality of the polymeric strands are periodically joined together in a regular pattern at bond regions throughout the array, wherein a majority of the polymeric strands are periodically bonded to at least two (three, four, five, six, or more) adjacent polymeric strands, and wherein no polymeric strands are continuously bonded to a polymeric strand. Three-dimensional polymeric strand netting described herein have a variety of uses, including wound care, tapes, filtration, absorbent articles, pest control articles, geotextile applications, water/vapor management in clothing, reinforcement for nonwoven articles, self bulking articles, floor coverings, grip supports, athletic articles, and pattern coated adhesives.