Abstract:
Systems, methods, and devices are provided for generating a tone mapping function used in adjusting the power consumed by a backlight of an electronic display. One such method includes sampling an image frame in framebuffer space and generating a tone mapping function in linear space. The tone mapping function may have at least two portions: a nondistorting portion that does not to distort pixels to which it applies when an intensity of a backlight of the electronic display is modified and a distorting portion that does distort pixels to which it applies when the intensity of the backlight is modified. Thereafter, the intensity of the backlight may be modified based at least in part on the nondistorting portion of the tone mapping function, the tone mapping function converted to framebuffer space, and the tone mapping function applied to the image frame or a subsequent image frame.
Abstract:
Systems, methods, and devices are provided for histogram generation and evaluation used in adjusting the power consumed by a backlight of an electronic display. One such method involves generating a pixel brightness histogram of an image frame passing through a pixel pipeline in a nonlinear space. One or more pixel brightness values from the histogram may be selected before being converted from the nonlinear space into a linear space. A tone mapping function and backlight intensity are determined based at least in part on the one or more pixel brightness values in the linear space. The resulting tone mapping function is converted to the nonlinear space and applied to the image frame or a subsequent image frame in the pixel pipeline. The pixels of the image frame to which the nondistorting portion of the tone mapping function is applied may appear substantially undistorted despite a reduction in backlight intensity.
Abstract:
An apparatus for performing memory calibrations during a performance state change is disclosed. A memory controller is configured to convey a clock signal to a memory and includes a calibration control circuit configured to perform a plurality of calibrations of the clock signal during a change from a first one to a second one of a plurality of performance states, and a delay circuit configured to apply a delay to clock signal conveyed to the memory. In performing a one of the calibrations, the calibration control circuit is configured to convey, to the memory, a first command to begin a timing test that generates a count value indicative of a current voltage of the memory, receive the count value from the memory at a conclusion of the timing test, and cause the delay circuit to adjust, based on the count value, the delay applied to the clock signal.
Abstract:
A memory subsystem and method for performing calibrations therein is disclosed. A memory subsystem includes a memory controller coupled to a memory by a plurality of signal paths. The memory controller is configured to perform an initial calibration to determine respective eye patterns corresponding to the ones of the plurality of signal paths. For a subsequent calibration, updated eye patterns are determined for a subset of the plurality of signal paths. Remaining ones of the plurality of signal paths (not included in the subset), are not active during the subsequent calibrations. Updated eye patterns for the remaining ones of the plurality of signal paths are determined based on information obtained during the initial calibration and information from signal paths in the subset designated proxies for the remaining ones of the plurality of signal paths.
Abstract:
A memory subsystem and method for performing calibrations therein is disclosed. A memory subsystem includes a memory controller coupled to a memory by a plurality of signal paths. The memory controller is configured to perform an initial calibration to determine respective eye patterns corresponding to the ones of the plurality of signal paths. For a subsequent calibrations, updated eye patterns are determined for a subset of the plurality of signal paths. Remaining ones of the plurality of signal paths (not included in the subset), are not active during the subsequent calibrations. Updated eye patterns for the remaining ones of the plurality of signal paths are determined based on information obtained during the initial calibration and information from signal paths in the subset designated proxies for the remaining ones of the plurality of signal paths.
Abstract:
A method and apparatus for performing duty cycle correction with read/write calibrations is disclosed. A first calibration is performed in a memory subsystem having a memory and a memory controller. The first calibration includes conveying a first clock signal from the memory controller to the memory, and determining the duty cycle of the first clock signal. If the duty cycle is not within a specified range, the duty cycle is adjusted and the process repeated. After the duty cycle of the first clock signal is within the specified range, a second calibration is performed, the second calibration including conveying a second clock signal from the memory to the memory controller. The duty cycle of the first clock signal may be further adjusted based on the second calibration.
Abstract:
An apparatus and method for encoding data are disclosed that may allow for performing periodic calibration operations on a communication link. A controller may determine multiple possible values for a reference voltage used with the communication link based on an initial value. Calibration operations may be performed using each possible value, and the results of the operations scored based on the width of data eyes measured during the calibration operations. The controller may then select a new value for the reference voltage from the multiple possible values dependent upon the scores of each of the multiple possible values.
Abstract:
A method and apparatus for predicting a reference voltage in a memory subsystem is disclosed. A memory subsystem includes a memory controller coupled to a memory. The memory controller includes a lookup table having a number of different reference voltage values each corresponding to one of a number of different performance states. The memory controller further includes calibration circuitry configured to determine reference voltages for operation in various performance states. Responsive to returning to a performance state after operating in another, the calibration circuitry may restore the reference voltage to its most recently used value, and also obtain a predicted reference voltage. Calibrations may be performed at both the restored reference voltage and the predicted reference voltage obtained from the lookup table. The subsequent operating reference voltage may then be selected based on which of the two calibrations resulted in the largest data eye width.
Abstract:
An apparatus and method for encoding data are disclosed that may allow for performing periodic calibration operations on a communication link. A controller may determine multiple possible values for a reference voltage used with the communication link based on an initial value. Calibration operations may be performed using each possible value, and the results of the operations scored based on the width of data eyes measured during the calibration operations. The controller may then select a new value for the reference voltage from the multiple possible values dependent upon the scores of each of the multiple possible values.
Abstract:
An apparatus and method for encoding data are disclosed that may allow for performing periodic calibration operations on a communication link. A controller may determine multiple possible values for a reference voltage used with the communication link based on an initial value. Calibration operations may be performed using each possible value, and the results of the operations scored based on the width of data eyes measured during the calibration operations. The controller may then select a new value for the reference voltage from the multiple possible values dependent upon the scores of each of the multiple possible values.