Abstract:
A test fixture includes an outer conductor and an inner conductor disposed within and electrically isolated from the outer conductor. The inner conductor includes a top portion having a first diameter, a bottom portion having a second diameter, and a third portion proximate the bottom portion that has a third diameter that is less than the second diameter and is greater than the first diameter. An electrical property of a chamber component disposed within the outer conductor is measurable based on application of a signal to at least one of the outer conductor or the inner conductor.
Abstract:
A system includes a process chamber, a housing that defines a waveguide cavity, and a first conductive plate within the housing. The first conductive plate faces the process chamber. The system also includes one or more adjustment devices that can adjust at least a position of the first conductive plate, and a second conductive plate, coupled with the housing, between the waveguide cavity and the process chamber. Electromagnetic radiation can propagate from the waveguide cavity into the process chamber through apertures in the second conductive plate. The system also includes a dielectric plate that seals off the process chamber from the waveguide cavity, and one or more electronics sets that transmit the electromagnetic radiation into the waveguide cavity. A plasma forms when at least one process gas is within the chamber, and the electromagnetic radiation propagates into the process chamber from the waveguide cavity.
Abstract:
A rotating microwave is established for any resonant mode TEmnl or TMmnl of a cavity, where the user is free to choose the values of the mode indices m, n and l. The fast rotation, the rotation frequency of which is equal to an operational microwave frequency, is accomplished by setting the temporal phase difference ΔØ and the azimuthal angle Δθ between two microwave input ports P and Q as functions of m, n and l. The slow rotation of frequency Ωα (typically 1-1000 Hz), is established by transforming dual field inputs α cos Ωαt and ±α sin Ωαt in the orthogonal input system into an oblique system defined by the angle Δθ between two microwave ports P and Q.
Abstract:
A test device for testing an electrical property of a chamber component, such as a ceramic ring, includes an outer conductor and an inner conductor disposed within and electrically isolated from the outer conductor. The outer conductor has a base, a top, and an interior sidewall disposed between the base and the top. The inner conductor has a top portion having a first diameter and a bottom portion having a second diameter, in which the second diameter is greater than the first diameter. A sample area is defined between the base of the outer conductor and the bottom portion of the inner conductor, and is configured to receive a chamber component. The electrical property of the chamber component and wherein an electrical property of the chamber component is measurable based on application of a signal to at least one of the outer conductor or the inner conductor.
Abstract:
Phase angle between opposing electrodes in a plasma reactor is controlled in accordance with a user selected phase angle. Direct digital synthesis of RF waveforms of different phases for the different electrodes is employed. The synthesis is synchronized with a reference clock. The address generator employed for direct digital synthesis is synchronized with an output clock signal that is generated in phase with the reference clock using a phase lock loop. The phase lock loop operates only during a limited initialization period.
Abstract:
A wafer chuck assembly includes a puck, a shaft and a base. The puck includes an electrically insulating material that defines a top surface of the puck; a plurality of electrodes are embedded within the electrically insulating material. The puck also includes an inner puck element that forms one or more channels for a heat exchange fluid, the inner puck element being in thermal communication with the electrically insulating material, and an electrically conductive plate disposed proximate to the inner puck element. The shaft includes an electrically conductive shaft housing that is electrically coupled with the plate, and a plurality of connectors, including electrical connectors for the electrodes. The base includes an electrically conductive base housing that is electrically coupled with the shaft housing, and an electrically insulating terminal block disposed within the base housing, the plurality of connectors passing through the terminal block.
Abstract:
Plasma is generated in a semiconductor process chamber by a plurality of microwave inputs with slow or fast rotation. Radial uniformity of the plasma is controlled by regulating the power ratio of a center-high mode and an edge-high mode of the plurality of microwave inputs into a microwave cavity. The radial uniformity of the generated plasma in a plasma chamber is attained by adjusting the power ratio for the two modes without inputting time-splitting parameters for each mode.
Abstract:
A plasma reactor has a cylindrical microwave cavity overlying a workpiece processing chamber, a microwave source having a pair of microwave source outputs, and a pair of respective waveguides. The cavity has first and second input ports in a sidewall and space apart by an azimuthal angle. Each of the waveguides has a microwave input end coupled to a microwave source output and a microwave output end coupled to a respective one of the first and second input ports, a coupling aperture plate at the output end with a rectangular coupling aperture in the coupling aperture plate, and an iris plate between the coupling aperture plate and the microwave input end with a rectangular iris opening in the iris plate.
Abstract:
Exemplary processing chambers may include a chamber housing at least partially defining an interior region of the semiconductor processing chamber. The chambers may include a showerhead positioned within the chamber housing. The showerhead may at least partially separate the interior region into a remote region and a processing region. Sidewalls of the chamber housing may at least partially define the processing region. The chambers may include a substrate support extending into the processing region and configured to support a substrate. The chambers may include an inductively-coupled plasma source positioned between the showerhead and the substrate support. The inductively-coupled plasma source may include a conductive material disposed within a dielectric material. The inductively-coupled plasma source may form a portion of the sidewalls of the chamber housing.
Abstract:
A plasma reactor for processing a workpiece has a microwave source with a digitally synthesized rotation frequency using direct digital up-conversion and a user interface for controlling the rotation frequency.