Abstract:
Embodiments of the present disclosure provide a liner assembly including a plurality of individually separated gas passages. The liner assembly enables tenability of flow parameters, such as velocity, density, direction and spatial location, across a substrate being processed. The processing gas across the substrate being processed may be specially tailored for individual processes with a liner assembly according to embodiment of the present disclosure.
Abstract:
Embodiments of the invention generally relate to susceptor support shafts and process chambers containing the same. A susceptor support shaft supports a susceptor thereon, which in turn, supports a substrate during processing. The susceptor support shaft reduces variations in temperature measurement of the susceptor and/or substrate by providing a consistent path for a pyrometer focal beam directed towards the susceptor and/or substrate, even when the susceptor support shaft is rotated. The susceptor support shafts also have a relatively low thermal mass which increases the ramp up and ramp down rates of a process chamber.
Abstract:
Embodiments of the present disclosure generally relate to apparatus and methods for semiconductor processing, more particularly, to a thermal process chamber. The thermal process chamber includes a substrate support, a first plurality of heating elements disposed over or below the substrate support, and a spot heating module disposed over the substrate support. The spot heating module is utilized to provide local heating of cold regions on a substrate disposed on the substrate support during processing. Localized heating of the substrate improves temperature profile, which in turn improves deposition uniformity.
Abstract:
Embodiments described herein generally relate to apparatus for fabricating semiconductor devices. A gas injection apparatus is coupled to a first gas source and a second gas source. Gases from the first gas source and second gas source may remain separated until the gases enter a process volume in a process chamber. A coolant is flowed through a channel in the gas injection apparatus to cool the first gas and the second gas in the gas injection apparatus. The coolant functions to prevent thermal decomposition of the gases by mitigating the influence of thermal radiation from the process chamber. In one embodiment, the channel surrounds a first conduit with the first gas and a second conduit with the second gas.
Abstract:
Embodiments of the present disclosure provide a thermal process chamber that includes a substrate support, a first plurality of heating elements disposed over or below the substrate support, and a spot heating module disposed over the substrate support. The spot heating module is utilized to provide local heating of regions on a substrate disposed on the substrate support during processing. Localized heating of the substrate alters temperature profile. The shape of the beam spot produced by the spot heating module can be modified without making changes to the optics of the spot heating module.
Abstract:
Embodiment disclosed herein include a liner assembly, comprising an injector plate liner, a gas injector liner coupled to the injector plate liner, an upper process gas liner coupled to the gas injector liner, a lower process gas liner coupled to the upper process gas liner, and an injector plate positioned between the injector plate liner and the upper process gas liner, wherein a cooling fluid channel is formed in the injector plate adjacent to the gas injector liner.
Abstract:
Embodiments of the disclosure include methods and apparatus for a thermal chamber with a low thermal mass. In one embodiment, a chamber is disclosed that includes a body, a susceptor positioned within the body, a first set of heating devices positioned in an upper portion of the body above the susceptor and a second set of heating devices positioned in a lower portion of the body below the susceptor, wherein each of the first set of heating devices have a heating element having a longitudinal axis extending in a first direction, and each of the second set of heating devices have a heating element having a longitudinal axis extending in a second direction that is orthogonal to the first direction, and wherein each of the heating elements have ends that are exposed to ambient environment.
Abstract:
Embodiments disclosed herein generally related to a processing chamber, and more specifically a heat modulator assembly for use in a processing chamber. The heat modulator assembly includes a heat modulator housing and a plurality of heat modulators. The heat modulator housing includes a housing member defining a housing plane, a sidewall, and an annular extension. The sidewall extends perpendicular to the housing plane. The annular extension extends outward from the sidewall. The plurality of heat modulators is positioned in the housing member.
Abstract:
In one embodiment, a substrate support assembly includes a susceptor for supporting a substrate, and a supporting transfer mechanism coupled to the susceptor, the supporting transfer mechanism having a surface for supporting a peripheral edge of the substrate, the supporting transfer mechanism being movable relative to an upper surface of the susceptor.