Abstract:
An optical source for a photolithography tool includes a source configured to emit a first beam of light and a second beam of light, the first beam of light having a first wavelength, and the second beam of light having a second wavelength, the first and second wavelengths being different; an amplifier configured to amplify the first beam of light and the second beam of light to produce, respectively, a first amplified light beam and a second amplified light beam; and an optical isolator between the source and the amplifier, the optical isolator including: a plurality of dichroic optical elements, and an optical modulator between two of the dichroic optical elements.
Abstract:
An optical source for a photolithography tool includes a source configured to emit a first beam of light and a second beam of light, the first beam of light having a first wavelength, and the second beam of light having a second wavelength, the first and second wavelengths being different; an amplifier configured to amplify the first beam of light and the second beam of light to produce, respectively, a first amplified light beam and a second amplified light beam; and an optical isolator between the source and the amplifier, the optical isolator including: a plurality of dichroic optical elements, and an optical modulator between two of the dichroic optical elements.
Abstract:
An optical source for a photolithography tool includes a source configured to emit a first beam of light and a second beam of light, the first beam of light having a first wavelength, and the second beam of light having a second wavelength, the first and second wavelengths being different; an amplifier configured to amplify the first beam of light and the second beam of light to produce, respectively, a first amplified light beam and a second amplified light beam; and an optical isolator between the source and the amplifier, the optical isolator including: a plurality of dichroic optical elements, and an optical modulator between two of the dichroic optical elements.
Abstract:
A method and apparatus for protecting the seed laser a laser produced plasma (LPP) extreme ultraviolet (EUV) light system are disclosed. An isolation stage positioned on an optical path diverts light reflected from further components in the LPP EUV light system from reaching the seed laser. The isolation stage comprises two AOMs that are separated by a delay line. The AOMs, when open, direct light onto the optical path and, when closed, direct light away from the optical path. The delay introduced by the delay line is determined so that the opening and the closing of the AOMs can be timed to direct a forward-moving pulse onto the optical path and to divert reflected light at other times. The isolation stage can be positioned between gain elements to prevent amplified reflected light from reaching the seed laser and other potentially harmful effects.
Abstract:
Techniques for generating EUV light include directing a first pulse of radiation toward a target material droplet to form a modified droplet, the first pulse of radiation having an energy sufficient to alter a shape of the target material droplet; directing a second pulse of radiation toward the modified droplet to form an absorption material, the second pulse of radiation having an energy sufficient to change a property of the modified droplet, the property being related to absorption of radiation; and directing an amplified light beam toward the absorption material, the amplified light beam having an energy sufficient to convert at least a portion of the absorption material into extreme ultraviolet (EUV) light.
Abstract:
Techniques for generating EUV light include directing a first pulse of radiation toward a target material droplet to form a modified droplet, the first pulse of radiation having an energy sufficient to alter a shape of the target material droplet; directing a second pulse of radiation toward the modified droplet to form an absorption material, the second pulse of radiation having an energy sufficient to change a property of the modified droplet, the property being related to absorption of radiation; and directing an amplified light beam toward the absorption material, the amplified light beam having an energy sufficient to convert at least a portion of the absorption material into extreme ultraviolet (EUV) light.
Abstract:
A system for an extreme ultraviolet (EUV) light source includes an optical amplifier including a gain medium positioned on a beam path, the optical amplifier configured to receive a light beam at an input and to emit an output light beam for an EUV light source at an output; a feedback system that measures a property of the output light beam and produces a feedback signal based on the measured property; and an adaptive optic positioned in the beam path and configured to receive the feedback signal and to adjust a property of the output light beam in response to the feedback signal.
Abstract:
Techniques are described that enhance power from an extreme ultraviolet light source with feedback from a target material that has been modified prior to entering a target location into a spatially-extended target distribution or expanded target. The feedback from the spatially-extended target distribution provides a nonresonant optical cavity because the geometry of the path over which feedback occurs, such as the round-trip length and direction, can change in time, or the shape of the spatially-extended target distribution may not provide a smooth enough reflectance. However, it may be possible that the feedback from the spatially-extended target distribution provides a resonant and coherent optical cavity if the geometric and physical constraints noted above are overcome. In any case, the feedback can be generated using spontaneously emitted light that is produced from a non-oscillator gain medium.
Abstract:
An initial pulse of radiation is generated; a section of the initial pulse of radiation is extracted to form a modified pulse of radiation, the modified pulse of radiation including a first portion and a second portion, the first portion being temporally connected to the second portion, and the first portion having a maximum energy that is less than a maximum energy of the second portion; the first portion of the modified pulse of radiation is interacted with a target material to form a modified target; and the second portion of the modified pulse of radiation is interacted with the modified target to generate plasma that emits extreme ultraviolet (EUV) light.
Abstract:
An initial pulse of radiation is generated; a section of the initial pulse of radiation is extracted to form a modified pulse of radiation, the modified pulse of radiation including a first portion and a second portion, the first portion being temporally connected to the second portion, and the first portion having a maximum energy that is less than a maximum energy of the second portion; the first portion of the modified pulse of radiation is interacted with a target material to form a modified target; and the second portion of the modified pulse of radiation is interacted with the modified target to generate plasma that emits extreme ultraviolet (EUV) light.