Abstract:
A positioning device comprising an object table and a positioning module configured to position the object table. The positioning module comprises a first positioning module member configured to hold the object table, a second positioning module member configured to support the first positioning module member, and a support frame configured to support the second positioning module member. The positioning module also includes one or more actuators, a position measurement system configured to measure a position of the object table, and a control unit configured to control a position of the object table based on the measured position of the object table. The control unit is further configured to control a vertical position of the second position module member so as to maintain a top surface of the second positioning module member substantially parallel to a bottom surface of the first positioning module member.
Abstract:
An actuator includes coil assemblies arranged in an array, wherein each coil assembly defines a core chamber having a core chamber height; and at least one magnetic member that extends partly along the core chamber height of the core chamber of a corresponding at least one coil assembly, wherein the at least one magnetic member is made of a magnetic material. A shape of the at least one magnetic member, a size of the at least one magnetic member, a position of the at least one magnetic member and/or the magnetic material of the at least one magnetic member may be selected so as to control one or more parameters of the actuator.
Abstract:
An object positioning system including a movable object, an actuator system and a control system. The moveable object is moveable relative to a reference. The actuator system is configured to apply a force to the object at a force application location on the object in order to move the moveable object relative to the reference. The control system is configured to position a point of interest of the object relative to the reference. The control system is configured to drive the actuator system based on a parameter representing a spatial relationship between the force application location and the point of interest. The parameter is dependent on a further parameter representing a position of the object relative to the reference.
Abstract:
A method of modifying a lithographic apparatus comprising an illumination system for providing a radiation beam, a support structure for supporting a patterning device to impart the radiation beam with a pattern in its cross-section, a first lens for projecting the radiation beam at the patterning device with a first magnification, a substrate table for holding a substrate, and a first projection system for projecting the patterned radiation beam at a target portion of the substrate with a second magnification. The first lens and the first projection system together provide a third magnification. The method comprises reducing by a first factor the first magnification to provide a second lens for projecting the radiation beam with a fourth magnification; and increasing by the first factor the second magnification to provide a second projection system for projecting the patterned radiation beam at the target portion of the substrate with a fifth magnification.
Abstract:
A support device configured to support a first part relative to a second part, minimizing the transfer of vibration between the two parts, includes a supporting system configured to use gas under pressure to provide a support force between the first and second parts; a gas chamber connected to the supporting system and configured to contain the gas under pressure and provide the gas under pressure to the supporting system; and a section of acoustic damping material, arranged at a location within the gas chamber so as to separate a first gas containing region and a second gas containing region within the gas chamber, wherein the section of acoustic damping material has a first side and a second side, wherein the first gas containing region is on the first side and the second gas containing region is on the second side.
Abstract:
The invention provides a method of determining a motor-dependent commutation model for an electromagnetic motor, whereby the electromagnetic motor comprises a first member comprising a coil array comprising at least M coils, and a second member comprising a magnet array configured to generate a spatially alternating magnetic field, whereby the first member and the second member are configured to displace relative to each other in N degrees of freedom, N
Abstract:
Disclosed herein is a platform for a charged particle apparatus, the platform comprising: a base frame; a chamber arranged to comprise a substrate; a metrology frame arranged to support a charged particle beam generator for irradiating a substrate in the chamber with a charged particle beam; and a bellow arranged between the metrology frame and the chamber; wherein: the chamber is rigidly connected to the base frame; the bellow comprises a flexible material such that the metrology frame is substantially isolated from any vibrations that are generated in the chamber; and the bellow is air tight so that a substantial vacuum may be established in the chamber.
Abstract:
There is provided a charged particle apparatus comprising: a particle beam generator, optics, a first and a second positioning device, both configured for positioning the substrate relative to the particle beam generator along its optical axis, and a controller configured for switching between a first operational mode and a second operational mode. The apparatus is configured, when operating in the first operational mode, for irradiating the substrate by the particle beam at a first landing energy of the particle beam and, when operating in the second operational mode, for irradiating the substrate at a second, different landing energy. When operating in the first operational mode, the second positioning device is configured to position the substrate relative to the particle beam generator at a first focus position of the particle beam and in the second operational mode, to position the substrate at a second, different focus position.
Abstract:
An actuator assembly including a first piezo actuator and a second piezo actuator. The piezo actuator has a correction unit configured to determine an output voltage difference representing a difference between a voltage at the output terminal of the first piezo actuator and a voltage at the output terminal of the second piezo actuator, and a first power correction for correcting the first power signal and/or a second power correction for correcting the second power signal, based on the output voltage difference.
Abstract:
An object table configured to hold an object on a holding surface, the object table including: a main body; a plurality of burls extending from the main body, end surfaces of the burls defining the holding surface; an actuator assembly; and a further actuator assembly, wherein the actuator assembly is configured to deform the main body to generate a long stroke out-of-plane deformation of the holding surface based on shape information of the object that is to be held and the further actuator assembly is configured to generate a short stroke out-of-plane deformation of the holding surface.