摘要:
A dielectric element, and method of manufacturing the same, is disclosed for a semiconductor structure which comprises a substrate having a gate formed on a top surface of the substrate. The substrate and gate define a gap in a region between the gate and the substrate. A specified amount of dielectric on the substrate, at least a portion of which is in the gap, forms the dielectric element which substantially prevents unwanted electrical connectivity between the gate and the substrate.
摘要:
Adding at least one non-silicon precursor (such as a germanium precursor, a carbon precursor, etc.) during formation of a silicon nitride, silicon oxide, silicon oxynitride or silicon carbide film improves the deposition rate and/or makes possible tuning of properties of the film, such as tuning of the stress of the film. Also, in a doped silicon oxide or doped silicon nitride or other doped structure, the presence of the dopant may be used for measuring a signal associated with the dopant, as an etch-stop or otherwise for achieving control during etching.
摘要:
A compound that includes at least Si, N and C in any combination, such as compounds of formula (R—NH)4-nSiXn wherein R is an alkyl group (which may be the same or different), n is 1, 2 or 3, and X is H or halogen (such as, e.g., bis-tertiary butyl amino silane (BTBAS)), may be mixed with silane or a silane derivative to produce a film. A polysilicon silicon film may be grown by mixing silane (SiH4) or a silane derviative and a compound including Si, N and C, such as BTBAS. Films controllably doped with carbon and/or nitrogen (such as layered films) may be grown by varying the reagents and conditions.
摘要翻译:至少包含任何组合中的Si,N和C的化合物,例如式(R-NH)4-n-SiX n N的化合物,其中R是烷基 (其可以相同或不同),n为1,2或3,X为H或卤素(例如双叔丁基氨基硅烷(BTBAS))可与硅烷或硅烷衍生物混合 制作一部电影。 可以通过混合硅烷(SiH 4 SO 4)或硅烷衍生物和包括Si,N和C的化合物如BTBAS来生长多晶硅硅膜。 可以通过改变试剂和条件来生长可控地掺杂有碳和/或氮的膜(例如层状膜)。
摘要:
A method for forming a trench structure is provided for a semiconductor and/or memory device, such as an DRAM device. In one embodiment, the method for forming a trench structure includes forming a trench in a semiconductor substrate, and exposing the sidewalls of the trench to an arsenic-containing gas to adsorb an arsenic containing layer on the sidewalls of the trench. A material layer is then deposited on the sidewalls of the trench to encapsulate the arsenic-containing layer between the material layer and sidewalls of the trench.
摘要:
Methods of fabricating a semiconductor structure with a non- epitaxial thin film disposed on a surface of a substrate of the semiconductor structure are disclosed. The methods provide selective non-epitaxial growth (SNEG) or deposition of amorphous and/or polycrystalline materials to form a thin film on the surface thereof. The surface may be a non-crystalline dielectric material or a crystalline material. The SNEG on non-crystalline dielectric further provides selective growth of amorphous/polycrystalline materials on nitride over oxide through careful selection of precursors-carrier-etchant ratio. The non-epitaxial thin film forms resultant and/or intermediate semiconductor structures that may be incorporated into any front-end-of-the-line (FEOL) fabrication process. Such resultant/intermediate structures may be used, for example, but are not limited to: source-drain fabrication; hardmask strengthening; spacer widening; high-aspect-ratio (HAR) vias filling; micro-electro-mechanical-systems (MEMS) fabrication; FEOL resistor fabrication; lining of shallow trench isolations (STI) and deep trenches; critical dimension (CD) tailoring and claddings.
摘要:
Adding at least one non-silicon precursor (such as a germanium precursor, a carbon precursor, etc.) during formation of a silicon nitride, silicon oxide, silicon oxynitride or silicon carbide film improves the deposition rate and/or makes possible tuning of properties of the film, such as tuning of the stress of the film. Also, in a doped silicon oxide or doped silicon nitride or other doped structure, the presence of the dopant may be used for measuring a signal associated with the dopant, as an etch-stop or otherwise for achieving control during etching.
摘要:
Stress level of a nitride film is adjusted as a function of two or more of the following: identity of a starting material precursor used to make the nitride film; identity of a nitrogen-containing precursor with which is treated the starting material precursor; ratio of the starting material precursor to the nitrogen-containing precursor; a set of CVD conditions under which the film is grown; and/or a thickness to which the film is grown. A rapid thermal chemical vapor deposition (RTCVD) film produced by reacting a compound containing silicon, nitrogen and carbon (such as bis-tertiary butyl amino silane (BTBAS)) with NH3 can provide advantageous properties, such as high stress and excellent performance in an etch-stop application. An ammonia-treated BTBAS film is particularly excellent in providing a high-stress property, and further having maintainability of that high-stress property over repeated annealing.
摘要:
A semiconductor device structure includes a substrate, a dielectric layer disposed on the substrate, first and second stacks disposed on the dielectric layer. The first stack includes a first silicon layer disposed on the dielectric layer, a silicon germanium layer disposed on the first silicon layer, a second silicon layer disposed on the silicon germanium layer, and a third silicon layer disposed on the second silicon layer. The second stack includes a first silicon layer disposed on the dielectric layer, and a second silicon layer disposed on the first silicon layer. Alternatively, the silicon germanium layer includes Boron.
摘要:
A method is provided for reducing the microloading effect in a CVD process for depositing a film on a substrate. This method is particularly useful in a single-wafer CVD reactor. The microloading effect is reduced by identifying a growth-rate-limiting reactant; calculating a dilution factor (the ratio of the gas flow rate of the growth-rate-limiting reactant to the total gas flow rate in the reactor); and adjusting the film growth rate and/or the dilution factor to satisfy a numerical criterion for reducing the microloading effect. The criterion is satisfied when the film growth rate is reduced, or the dilution factor is increased, so that the dilution factor is equal to or greater than a quantity which includes the film growth rate as a factor. The film growth rate and dilution factor may be adjusted independently. The gap between the showerhead and the substrate in the CVD reactor may be adjusted to satisfy the numerical criterion. The gap may advantageously be reduced to less than 5 mm, preferably to about 100 &mgr;m. A gap in the range 50 &mgr;m-5 mm reduces a characteristic distance which is a factor in the above-mentioned quantity, so that the criterion becomes easier to meet.
摘要:
A method is provided for filling high aspect ratio gaps without void formation by using a high density plasma (HDP) deposition process with a sequence of deposition and etch steps having varying etch rate-to-deposition rate (etch/dep) ratios. The first step uses an etch/dep ratio less than one to quickly fill the gap. The first step is interrupted before the opening to the gap is closed. The second step uses an etch/dep ratio greater than one to widen the gap. The second step is stopped before corners of the elements forming the gaps are exposed. These steps can be repeated until the aspect ratio of the gap is reduced so that void-free gap-fill is possible. The etch/dep ratio and duration of each step can be optimized for high throughput and high aspect ratio gap-fill capacity.