Abstract:
The present invention relates to a method for producing a conductor structural element, comprising providing a rigid substrate, electrodepositing a copper coating on the rigid substrate, applying a conductor pattern structure to the copper coating, then possibly mounting components, laminating the substrate with at least one electrically insulating layer, detaching the rigid substrate, at least partially removing the remaining copper coating of the rigid substrate in such a way that the conductor pattern structure is exposed.
Abstract:
The method of operation applies to a self-powered home automation sensor device for detecting the existence of and/or for measuring the intensity of a first physical phenomenon, comprising a means of converting an effect of a second physical phenomenon into electrical energy and a means of determining the instantaneous power of this second physical phenomenon that can be converted into electrical energy, wherein a normal, first mode of operation of the device or an energy-saving second mode of operation of the device is activated according to a value defined on the basis of the determination of the instantaneous power that can be converted into electrical energy.
Abstract:
In a method for producing an electronic subassembly, at least one electronic component is fixed in place on an insulating layer of a conductive foil in a first step, the conductive foil with the electronic component is laminated onto a circuit board substrate, and a circuit track structure is then developed by structuring the conductive foil. The expansion coefficient of the insulating layer lies between the expansion coefficient of the circuit board substrate and the expansion coefficient of the circuit track structure, and/or electronic components that require small passages for contacting with the circuit track structure are pressed deeper into the insulating layer than electronic components that require larger passages in the insulating layer.
Abstract:
In accordance with the invention, there are imaging interferometric microscopes and methods for imaging interferometric microscopy using structural illumination and evanescent coupling for the extension of imaging interferometric microscopy. Furthermore, there are coherent anti-Stokes Raman (CARS) microscopes and methods for coherent anti-Stokes Raman (CARS) microscopy, wherein imaging interferometric microscopy techniques are applied to get material dependent spectroscopic information.
Abstract:
The method of operation applies to a self-powered home automation sensor device for detecting the existence of and/or for measuring the intensity of a first physical phenomenon, comprising a means of converting an effect of a second physical phenomenon into electrical energy and a means of determining the instantaneous power of this second physical phenomenon that can be converted into electrical energy, wherein a normal, first mode of operation of the device or an energy-saving second mode of operation of the device is activated according to a value defined on the basis of the determination of the instantaneous power that can be converted into electrical energy.