摘要:
Microchip capillary electrophoresis (CE) utilizing a sample injector based on a mechanical valve rather than electrokinetic injection can provide improved sample injections, enhanced capabilities, and can eliminate the need for changing the electric field in the separation channel to induce sample injection. In one instance CE electrodes continuously apply an electric field for CE separation along a separation channel. A sample channel is connected to the separation channel at an intersection and has a sample pressure that is greater than that which is present in the separation channel near the intersection. The sample channel does not have electrodes that apply voltages for electrokinetic injection. A sample injector in the sample channel or at the intersection comprises a mechanical valve to control sample injection from the sample channel to the separation channel.
摘要:
A transfer structure for droplet-based microfluidic analysis is characterized by a first conduit containing a first stream having at least one immiscible droplet of aqueous material and a second conduit containing a second stream comprising an aqueous fluid. The interface between the first conduit and the second conduit can define a plurality of apertures, wherein the apertures are sized to prevent exchange of the first and second streams between conduits while allowing lossless transfer of droplets from the first conduit to the second conduit through contact between the first and second streams.
摘要:
Electrospray ionization emitter arrays, as well as methods for forming electrosprays, are described. The arrays are characterized by a radial configuration of three or more nano-electrospray ionization emitters without an extractor electrode. The methods are characterized by distributing fluid flow of the liquid sample among three or more nano-electrospray ionization emitters, forming an electrospray at outlets of the emitters without utilizing an extractor electrode, and directing the electrosprays into an entrance to a mass spectrometry device. Each of the nano-electrospray ionization emitters can have a discrete channel for fluid flow. The nano-electrospray ionization emitters are circularly arranged such that each is shielded substantially equally from an electrospray-inducing electric field.
摘要:
An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area. A predetermined number of pairs of surfaces are disposed in one or more chambers, forming a multiple-layer ion mobility cyclotron device.
摘要:
Microchip capillary electrophoresis (CE) utilizing a sample injector based on a mechanical valve rather than electrokinetic injection can provide improved sample injections, enhanced capabilities, and can eliminate the need for changing the electric field in the separation channel to induce sample injection. In one instance CE electrodes continuously apply an electric field for CE separation along a separation channel. A sample channel is connected to the separation channel at an intersection and has a sample pressure that is greater than that which is present in the separation channel near the intersection. The sample channel does not have electrodes that apply voltages for electrokinetic injection. A sample injector in the sample channel or at the intersection comprises a mechanical valve to control sample injection from the sample channel to the separation channel.
摘要:
Microchip capillary electrophoresis (CE) utilizing a sample injector based on a mechanical valve rather than electrokinetic injection can provide improved sample injections, enhanced capabilities, and can eliminate the need for changing the electric field in the separation channel to induce sample injection. In one instance CE electrodes continuously apply an electric field for CE separation along a separation channel. A sample channel is connected to the separation channel at an intersection and has a sample pressure that is greater than that which is present in the separation channel near the intersection. The sample channel does not have electrodes that apply voltages for electrokinetic injection. A sample injector in the sample channel or at the intersection comprises a mechanical valve to control sample injection from the sample channel to the separation channel.
摘要:
Electrospray ionization emitter arrays, as well as methods for forming electrosprays, are described. The arrays are characterized by a radial configuration of three or more nano-electrospray ionization emitters without an extractor electrode. The methods are characterized by distributing fluid flow of the liquid sample among three or more nano-electrospray ionization emitters, forming an electrospray at outlets of the emitters without utilizing an extractor electrode, and directing the electrosprays into an entrance to a mass spectrometry device. Each of the nano-electrospray ionization emitters can have a discrete channel for fluid flow. The nano-electrospray ionization emitters are circularly arranged such that each is shielded substantially equally from an electrospray-inducing electric field.
摘要:
A system and method are disclosed that provide up to complete transmission of ions between coupled stages with low effective ion losses. A novel “interfaceless” electrospray ionization system is further described that operates the electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer.
摘要:
A method for introducing ions generated in a region of relatively high pressure into a region of relatively low pressure by providing at least two electrospray ion sources, providing at least two capillary inlets configured to direct ions generated by the electrospray sources into and through each of the capillary inlets, providing at least two sets of primary elements having apertures, each set of elements having a receiving end and an emitting end, the primary sets of elements configured to receive a ions from the capillary inlets at the receiving ends, and providing a secondary set of elements having apertures having a receiving end and an emitting end, the secondary set of elements configured to receive said ions from the emitting end of the primary sets of elements and emit said ions from said emitting end of the secondary set of elements. The method may further include the step of providing at least one jet disturber positioned within at least one of the sets of primary elements, providing a voltage, such as a dc voltage, in the jet disturber, thereby adjusting the transmission of ions through at least one of the sets of primary elements.
摘要:
A method and apparatus that utilizes two or more emitters simultaneously to form an electrospray of a sample that is then directed into a mass spectrometer, thereby increasing the total ion current introduced into an electrospray ionization mass spectrometer, given a liquid flow rate of a sample. The method and apparatus are most conveniently constructed as an array of spray emitters fabricated on a single chip, however, the present invention encompasses any apparatus wherein two or more emitters are simultaneously utilized to form an electrospray of a sample that is then directed into a mass spectrometer.