Abstract:
The embodiments of the present invention provides an oxide TFT, an array substrate and a display device, an oxide channel layer of the oxide TFT comprises a front channel oxide layer and a back channel oxide layer, a conduction band bottom of the back channel oxide layer being higher than a conduction band bottom of the front channel oxide layer, and a band gap of the back channel oxide layer being larger than a band gap of the front channel oxide layer. In the oxide TFT, the array substrate and the display device provided in the present invention, it is possible to accumulate a large number of electrons through the potential difference formed between oxide channel layers of a multilayer structure so as to increase the carrier concentration in the oxide channel layers to achieve the purpose of improving TFT mobility without damaging TFT stability.
Abstract:
Fabrication methods of a transparent conductive electrode (301) and an array substrate are provided. The fabrication method of the transparent conductive electrode (301) comprises: forming a sacrificial layer pattern (201) on a substrate (10) having a first region (A1) and a second region (A2) adjacent to each other, wherein the sacrificial layer pattern (201) is located in the second region (A2), and has an upper sharp corner profile formed on a side adjacent to the first region (A1); forming a transparent conductive thin-film (30) in the first region (A1) and the second region (A2) of the substrate (10) with the sacrificial layer pattern (201) formed thereon, wherein a thickness ratio of the transparent conductive thin-film (30) to the sacrificial layer pattern (201) is less than or equal to 1:1.5, and the transparent conductive thin-film (30) is disconnected at the upper sharp corner profile of the sacrificial layer pattern (201), such that at least a part of a side surface of the sacrificial layer pattern (201) facing the first region (A1) is exposed; and removing the sacrificial layer pattern (201) so as to reserve the transparent conductive thin-film (30) in the first region as the transparent conductive electrode (301).
Abstract:
A method for manufacturing an array substrate and a method for forming a through hole are provided. The method for manufacturing the array substrate comprise: coating photoresist in an insulating layer through-hole region on a substrate; depositing an insulating layer on the substrate provided with the photoresist in the insulating layer through-hole region; and stripping off the photoresist in the insulating layer through-hole region to form an insulating layer through hole. The manufacturing method simplifies the process of forming the insulating layer through hole.
Abstract:
Embodiments of the present invention provide a thin film transistor, method for fabricating the thin film transistor and display apparatus. The method includes steps of: forming an active layer pattern which has a mobility greater than a predetermined threshold from an active layer material; and performing ion implantation on the active layer pattern. The energy of a compound bond formed from the implanted ions is greater than that of a compound bond formed from ions in the active layer material, thereby reducing the chance of vacancy formation and reducing the carrier concentration. Therefore, the mobility of the active layer surface is reduced, the leakage current is reduced, the threshold voltage is adjusted to shift toward positive direction and performance of the thin film transistor is improved.
Abstract:
A display panel includes: a first substrate, a driving circuit layer including a plurality of thin-film transistors, a planarization layer including a first portion, a second portion, and a third portion; where a thickness of the first portion is less than that of the second portion, and a thickness of the third portion is less than that of the second portion; the first portion includes a first through hole; a light-emitting device including an anode, where the anode covers the first portion and a lateral surface adjacent to the first portion, of the second portion, and an angle between a surface at a side away from the first substrate, of a part of the anode covering the lateral surface of the second portion and a surface parallel to a plane where the first substrate is located, of the anode, is greater than 0.
Abstract:
A thin film transistor including: a base substrate, and an active layer and a gate on the base substrate, where the active layer includes a first part and a second part, a conductivity of the second part is greater than a conductivity of the first part; an orthographic projection of the gate on the base substrate covers an orthographic projection of the first part on the base substrate, and the orthographic projection of the gate on the base substrate does not overlap an orthographic projection of the second part on the base substrate; and the first part includes a plurality of first sub-parts, and two sides of any one first sub-part in a trend direction of the active layer are each connected to the second part.
Abstract:
Provided are a thin-film transistor and a manufacturing method thereof, and a display substrate, belonging to the technical field of thin-film transistors. The thin-film transistor includes: a base substrate; a gate electrode on the base substrate; an active layer on a side of the gate electrode away from the base substrate, an orthographic projection of the active layer onto the base substrate overlapping with an orthographic projection of the gate electrode onto the base substrate; and a first electrode and a second electrode on a side of the active layer away from the base substrate, the first electrode being one of a source electrode and a drain electrode, and the second electrode being the other of the source electrode and the drain electrode. Specifically the active layer includes a channel region corresponding to a gap between the first electrode and the second electrode, and a width direction of the channel region is perpendicular or substantially perpendicular to an extending direction of the gate electrode. According to the embodiments of the present disclosure, the illumination stability of the thin-film transistor can be improved without reducing the transmittance of the substrate.
Abstract:
The present disclosure has disclosed a semiconductor material, light-emitting device, display panel and display device. The semiconductor material comprises: at least two of an oxide of a first element, an oxide of a second element, an oxide of a third element, an oxide of a fourth element and a compound of fifth element, and comprises at least the oxide of the first element and the compound of the fifth element; the first element comprises at least one of In, Zn, Sn, Cd, Tl and Pb; the second element comprises at least one of Ta, Ga, W, Ba, V, Hf and Nb; the third element comprises at least one of Sn, Zr, Cr and Si; the fourth element comprises at least one of Zn, Al, Sn, Ta, Hf, Zr and Ti; and the compound of the fifth element comprises MxA.
Abstract:
A metal oxide semiconductor material includes a semiconductor base material and at least one kind of rare earth compound doped in the semiconductor base material, Each kind of rare earth compound has a general formula represented as (MFD)aAb, where in s the general formula (MFD)aAb, MFD is an element selected from rare earth elements capable of undergoing f-d transition and/or charge transfer transition, A is selected from elements capable of stretching a wavelength range of an absorption spectrum of MFD capable of undergoing the f-d transition and/or the charge transfer transition towards red light into a visible light range, a is a number of the element MFD in the general formula (MFD)aAb, and b is a number of the element A in the general formula (MFD)aAb.
Abstract:
A displaying substrate and a displaying device. The displaying substrate comprises a flexible base plate; a first auxiliary electrode arranged on one side of the flexible base plate, the first auxiliary electrode being connected with a first power cord; a pixel unit arranged on a side of the flexible base plate away from a first metal layer, the pixel unit comprising: thin-film transistors arranged on the side of the flexible base plate away from the first metal layer, an insulation layer and a second auxiliary electrode, the second auxiliary electrode being connected with a second power cord, wherein the plurality of thin-film transistors comprise a drive transistor, the drive transistor has a source connected with the first auxiliary electrode and a drain connected with a first electrode of a light emitting device, a second electrode of the light emitting device is connected with the second auxiliary electrode.