Abstract:
A thin film transistor and a manufacturing method thereof, a display substrate and a display device are provided. The method of manufacturing the thin film transistor comprises forming an active layer (4) having characteristics of crystal orientation of C-axis on a substrate (1) by using indium gallium zinc oxide (InGaO3(ZnO)m), where m≧2. The active layer fabricated with InGaO3(ZnO)m has a good electron mobility, and the quality of the fabricated active layer is improved.
Abstract:
The present disclosure provides a metal wire and a method for manufacturing the same. The method for manufacturing the metal wire includes: forming a metal bar on a substrate; forming a mask above the metal bar, a width of the mask being smaller than a width of the metal bar, and an orthographic projection of the mask on the substrate is within an orthographic projection of the metal bar on the substrate; and wet etching the metal bar to a saturation state under a protection of the mask to form a metal wire, a width of the metal wire being smaller than the width of the mask. The above method can form the metal wire with a high thickness and a narrow line width.
Abstract:
Provided are a detection substrate and a manufacturing method therefor, and a ray detection apparatus. The detection substrate includes: a driving back plate, wherein the driving back plate is provided with a plurality of detection regions, and each detection region includes a thin-film transistor located on a base substrate, and a first bonding electrode that is located on the thin-film transistor and is electrically connected to a source electrode of the thin-film transistor; and a plurality of avalanche photodiodes, wherein the plurality of avalanche photodiodes are arranged in the detection regions one by one, and a second bonding electrode that is fixedly connected to the first bonding electrode is arranged on the side of each avalanche photodiode that faces the driving back plate.
Abstract:
A photoelectric detection circuit and a driving method therefor, and a detection substrate and a ray detector. The photoelectric detection circuit includes a storage circuit (101), an amplification circuit (102), a first reading circuit (103) and a second reading circuit (104), where the storage circuit (101), the amplification circuit (102) and the first reading circuit (103) cooperate with one another to realize a photoelectric detection function in an active mode; and the storage circuit (101) and the second reading circuit (104) cooperate with each other to realize a photoelectric detection function in a passive mode.
Abstract:
The embodiments of the present disclosure provide a detection substrate and a ray detector, comprising a base substrate; a direct-conversion photosensitive device located on the base substrate; an indirect-conversion photosensitive device located between the base substrate and the layer where the direct-conversion photosensitive device is located; and a reading transistor located between the base substrate and the layer where the indirect-conversion photosensitive device is located. The reading transistor is electrically connected to the direct-conversion photosensitive device and the indirect-conversion photosensitive device respectively.
Abstract:
An X-ray flat panel detector, a method for manufacturing the X-ray flat panel detector, a detection device and an imaging system are provided. The X-ray flat panel detector includes: a substrate; a back plate layer arranged on the substrate and including a plurality of thin film transistors, each thin film transistor including a source/drain electrode layer; a wiring layer arranged at a side of the back plate layer distal to the substrate and including a plurality of connection lines; and a photosensitive element layer arranged at a side of the wiring layer distal to the substrate and including first electrodes. Each first electrode is electrically connected to the source/drain electrode layer of a corresponding thin film transistor through a corresponding connection line, and an orthogonal projection of the first electrode onto the substrate does not overlap an orthogonal projection of the corresponding thin film transistor onto the substrate.
Abstract:
The present disclosure provides a flat panel detector and a driving method thereof. A detection unit includes: a first transistor, a second transistor, a storage capacitor and a photoelectric detection device, and because an active layer of the second transistor is made of amorphous silicon semiconductor materials and an active layer of the first transistor is made of low-temperature poly-silicon semiconductor materials or metallic oxide semiconductor materials, transmission delay of an electric signal generated by the photoelectric detection device may be reduced by controlling conduction and cut-off of the first transistor and controlling conduction and cut-off of the second transistor.
Abstract:
A ray detector and a ray detection panel. The ray detector includes a base substrate, a thin film transistor, a scintillator, and a photodetector; the scintillator is located on aside of the photodetector that is away from the base substrate; the photodetector includes: a first conductive structure; a semiconductor layer; a second conductive structure; a first dielectric layer; and a second dielectric layer, the second conductive structure is electrically connected with source electrode; the thin film transistor is located between the base substrate and the photodetector; and an orthographic projection of the thin film transistor on the base substrate at least partially falls into an orthographic projection of the photodetector on the base substrate.
Abstract:
A method for manufacturing an array substrate, a display panel and a display device are provided. The method includes forming a semiconductor layer, a gate insulating layer, a gate and an inter-layer insulator successively on a base substrate; forming via holes in the inter-layer insulator so as to expose portions of the semiconductor layer; performing plasma bombardment to the portions of the semiconductor layer exposed in the via holes; forming a source electrode and a drain electrode coupled with the semiconductor layer through the via holes respectively on the inter-layer insulator.
Abstract:
A method for manufacturing a thin-film transistor is disclosed, which includes forming an active layer over a substrate, and performing oxidation treatment to a channel region of the active layer for controlling a carrier concentration in the channel region of the active layer. The active layer having a high carrier concentration is directly formed, and the oxidation treatment can be configured to reduce a carrier concentration of the channel region of the active layer to a level where a gating property of the thin-film transistor is still maintained. In the thin-film transistor manufactured thereby, there is a relatively small contact resistance between a source electrode and a source electrode region of the active layer and between the drain electrode and the drain electrode region of the active layer.