Abstract:
The present invention discloses an array substrate and a manufacturing method thereof, and a display device, and relates to the field of display technology, in order to reduce the leakage current of the TFT, improve the stability of the TFT, and enhance the display effect of the display device. The array substrate comprises: a transparent substrate, a TFT on the transparent substrate, a first passivation layer covering the TFT, a first transparent electrode on a surface of the first passivation layer, and a light blocking structure for preventing light transmission provided at a position, corresponding to a channel of the TFT, on a side of the TFT away from the transparent substrate.
Abstract:
A thin film transistor, an amorphous silicon flat detection substrate and a manufacturing method are provided. The material for a source electrode and a drain electrode of the thin film transistor is a conductor converted from the material for the amorphous metal oxide active layer by depositing an insulating substance containing hydrogen ions not less than a preset value, which reduces the valence band level difference between the source and the drain electrodes and the active layer, realizes good lattice matching and improves electricity characteristics of the thin film transistor.
Abstract:
The present invention relates to the field of displays and discloses a color filter substrate, a display device and a method for manufacturing a color filter substrate. The color filter substrate comprises: a transparent substrate; a light-electricity converting module, provided on the transparent substrate and configured to convert a light beam incident from the transparent substrate into electric energy. The display device comprises the color filter substrate. In the invention, a light-electricity converting module is set on a transparent substrate, thus a light beam incident from the transparent substrate may be converted into electric energy, so that the sunlight transmitted into a display panel may be transformed into electric energy; because the solar energy is abundant, it may meet the demand of the display panel, and the service time of the display panel may be prolonged.
Abstract:
The invention relates to the field of display technologies, and discloses a method for producing a via, a method for producing an array substrate, an array substrate and a display device to prevent a chamfer from being formed in producing the via, to promote the product quality and improve the display effect of the display device. The method for producing a via comprises: employing a first etching process to partially etch a top film layer in an area that needs to form a via above an electrode, wherein the vertical etching amount achieved by employing the first etching process is less than the thickness of the top film layer; and employing a second etching process for which the vertical etching rate is larger than the lateral etching rate to etch the remaining part in the area that needs to form a via, until the electrode is exposed.
Abstract:
An Oxide TFT, a preparation method thereof, an array substrate and a display device are described. The method includes forming a gate electrode, a gate insulating layer, a channel layer, a barrier layer, as well as a source electrode and a drain electrode on a substrate; the channel layer is formed by depositing an amorphous oxide semiconductor film in a first mixed gas containing H2, Ar and O2. By depositing a channel layer in a first mixed gas containing H2, Ar and O2, the hysteresis phenomenon of the TFT can be mitigated effectively to improve the display quality of the display panel.
Abstract:
A sensor and its fabrication method are provided, the sensor comprises: a base substrate (32), a group of gate lines (30) and a group of data lines (31) arranged as crossing each other, and a plurality of sensing elements arranged in an array and defined by the group of gate lines (30) and the group of data lines (31), each sensing element comprising a TFT device and a photodiode sensing device, wherein a channel region of the TFT device is inverted and the source and drain electrodes (33, 34) are positioned between the active layer (36) and the gate electrode (38). The sensor reduces the number of mask as well as the production cost and simplifies the production process, thereby significantly improves the production capacity and the defect-free rate.
Abstract:
Embodiments of the present invention provide three-dimensional glasses and a control chip thereof. The three-dimensional glasses comprise: a normal black mode liquid crystal eyeglass; a normal white mode liquid crystal eyeglass; and a control chip, connected to both of the normal black mode liquid crystal eyeglass and the normal white mode liquid crystal eyeglass, wherein a voltage output terminal of the control chip simultaneously supplies a high level or a low level to the normal black mode liquid crystal eyeglass and the normal white mode liquid crystal eyeglass based on a predetermined high and low level switching frequency.