Abstract:
A display panel includes: a base; a pixel defining layer disposed on a side of the base; a plurality of light-emitting devices disposed on a side of the base; and at least one connection portion disposed on a side of the pixel defining layer away from the base. The pixel defining layer has a plurality of first openings. At least a portion of each light-emitting device is located in a first opening. An orthogonal projection of a connection portion on the base is located within an orthogonal projection of the pixel defining layer on the base. A surface of the connection portion away from the base has a plurality of protrusions, and the connection portion is configured to diffusely reflect external ambient light incident into the display panel.
Abstract:
An array substrate, a display panel and a display device are provided. The array substrate includes, a base substrate, a thin film transistor layer, a first passivation layer, a quantum dot layer, a color filter layer, a planarization layer and a metal wire grid polarizing layer that are sequentially disposed on the base substrate. The quantum dot layer is located in a display region of the array substrate, and an orthographic projection of the color filter layer on the base substrate.
Abstract:
The present disclosure provides a light receiving stacked-hole structure and a fabrication method thereof, and a fingerprint recognition device. The method includes forming a base light blocking layer having a first opening on a first surface of a substrate; forming at least one overlying light blocking layer having a second opening on a side of the base light blocking layer away from the substrate, wherein the overlying light blocking layer having the second opening is formed by using the base light blocking layer as a mask plate.
Abstract:
An opposite substrate, a method for manufacturing the opposite substrate, an organic light-emitting display panel and a display device are provided by the embodiments of the present disclosure. The opposite substrate includes a base substrate, an auxiliary electrode on the base substrate, a planarization layer on a side of the auxiliary electrode facing away from the base substrate, a spacer on a side of the planarization layer facing away from the base substrate, and a conductive layer on a side of the spacer facing away from the base substrate. The conductive layer at least covers a surface of the spacer facing away from the base substrate, and the conductive layer is electrically connected with the auxiliary electrode through a via hole structure passing through the planarization layer.
Abstract:
The invention relates to a light emitting device, a manufacturing method thereof and a display device. The light emitting device comprises: a substrate, and a first electrode layer, a second electrode layer and a light emitting layer arranged above the substrate, the light emitting layer being disposed between the first electrode layer and the second electrode layer, the light emitting layer comprises a hole transport layer having a first thickness which is capable of avoiding performance degradation of the light emitting device.
Abstract:
A quantum dot ink, a manufacturing method thereof and a quantum dot light emitting diode device are provided. The quantum dot ink includes a non-polar organic solvent, a surface tension modifier and a hydrophobic quantum dot, the quantum dot ink further includes a carrier transport material, wherein phase separation is present between the hydrophobic quantum dot and the carrier transport material. After completing ink-jet printing the quantum dot ink, phase separation occurs between the hydrophobic quantum dot and the carrier transport material. Thus, the two-layer structure of a hydrophobic quantum dot layer and a carrier transport material layer is formed through one process. Not only a quantum dot light emitting device is manufactured by the method of ink-jet printing, but also the operation is simplified, and the manufacturing cost of the quantum dot light emitting device is reduced.
Abstract:
Embodiments of the disclosure disclose an array substrate and a fabrication method thereof, and a display device. The fabrication method of the array substrate comprises: forming a thin film transistor; forming a passivation layer covering the thin film transistor, the passivation layer having a via hole and the via hole exposing at least a portion of a drain electrode of the thin film transistor; forming a via-hole conductive layer, the via-hole conductive layer covering the portion of the drain electrode exposed at the via hole and connected to the drain electrode; treating the via-hole conductive layer, so that a reflectivity of the via-hole conductive layer is lower than a reflectivity of the drain electrode; and forming a pixel electrode, the pixel electrode being connected with the drain electrode through the via-hole conductive layer.
Abstract:
Embodiments of the disclosure disclose an array substrate and a fabrication method thereof, and a display device. The fabrication method of the array substrate comprises: forming a thin film transistor; forming a passivation layer covering the thin film transistor, the passivation layer having a via hole and the via hole exposing at least a portion of a drain electrode of the thin film transistor; forming a via-hole conductive layer, the via-hole conductive layer covering the portion of the drain electrode exposed at the via hole and connected to the drain electrode; treating the via-hole conductive layer, so that a reflectivity of the via-hole conductive layer is lower than a reflectivity of the drain electrode; and forming a pixel electrode, the pixel electrode being connected with the drain electrode through the via-hole conductive layer.
Abstract:
The disclosure provides an inkjet ink for color filter and a method for preparing the same, as well as a method for preparing of a color filter. The inkjet ink for color filter comprising, by weight, 10 to 50 parts of aqueous nano pigment dispersion and 51 to 95 parts of a cold curing component.
Abstract:
The present application relates to the technical field of display, and discloses an OLED display panel and a display device. The OLED display panel includes a drive backplane; and an OLED device, an encapsulation structure and a color resistor structure which are arranged on the drive backplane; the encapsulation structure and the color resistor structure are located on a side, facing away from the drive backplane, of the OLED device, and the color resistor structure includes a chromatic color resistor layer, a first BM and a second BM; and the first BM is located on a side, facing away from the drive backplane, of the chromatic color resistor layer, and the second BM is located on a side, facing the drive backplane, of the chromatic color resistor layer.