Abstract:
The present disclosure relates to a method of fabricating a flexible display panel. The method of fabricating the flexible display panel may include forming a photosensitive layer comprising at least one azo group on a carrier substrate; forming a flexible substrate on the photosensitive layer; irradiating the photosensitive layer with ultraviolet light; and peeling off the flexible substrate from the carrier substrate.
Abstract:
A drive backboard, a manufacturing method thereof, a display panel and a display device are provided. The drive backboard includes a plurality of pixel units and a plurality of spare electrode groups. Each pixel unit includes m subpixel units, and m is a positive integer greater than or equal to 2. Each spare electrode group includes two first spare electrodes and one second spare electrode; two adjacent ith subpixel units respectively use one first spare electrode in each spare electrode group and share one second spare electrode in each spare electrode group, where i is a positive integer from 1 to m.
Abstract:
Disclosed are a fingerprint recognition sensor, a manufacturing method, and a display device. The fingerprint recognition sensor includes a base substrate, a thin film transistor, on a side of the base substrate; and a photosensitive element, on a side of the base substrate away from the thin film transistor, the thin film transistor, the base substrate, and the photosensitive element are sequentially stacked in a thickness direction perpendicular to the base substrate, the base substrate includes a conductive structure penetrating through the base substrate in the thickness direction perpendicular to the base substrate, and the photosensitive element is connected with the thin film transistor through the conductive structure.
Abstract:
The present application provides display mother-substrate, method of manufacturing display mother-substrate, display substrate and display apparatus. The display mother-substrate is configured to be cut along cutting line to obtain display substrate, has display area and non-display area, and includes: a base substrate; a plurality of light emitting elements on the base substrate and in the display area; an encapsulation layer for encapsulating the plurality of the light emitting elements on a side of the plurality of light emitting elements away from the base substrate and in both of the display area and the non-display area; a spacer component in the non-display area and on a side of the encapsulation layer close to the base substrate. At least a part of the spacer component is between the cutting line and the display area. The encapsulation layer is discontinuous at a position between the cutting line and the display area.
Abstract:
Disclosed are a curved display device and a manufacturing method therefor. The curved display device includes: an array substrate and an opposite substrate arranged opposite to each other, and a liquid crystal layer located between the array substrate and the opposite substrate, wherein on a side, away from the liquid crystal layer, of the array substrate and/or the opposite substrate, a plurality of piezoelectric sensors parallel to each other and a piezoelectric control chip in electrical signal connection with the piezoelectric sensors are respectively provided.
Abstract:
A display panel is provided, including a substrate on a base, a transistor stack on the substrate, and a fluorescent layer between the base and the transistor stack. The fluorescent layer is configured to prevent light from damaging an active layer in the transistor stack in a laser lift-off process, and an orthographic projection of the fluorescent layer on the base overlaps an orthographic projection of the active layer on the base. A display device comprising the display panel, and a manufacturing method of the display panel are further provided.
Abstract:
Embodiments of the disclosure disclose an array substrate and a fabrication method thereof, and a display device. The fabrication method of the array substrate comprises: forming a thin film transistor; forming a passivation layer covering the thin film transistor, the passivation layer having a via hole and the via hole exposing at least a portion of a drain electrode of the thin film transistor; forming a via-hole conductive layer, the via-hole conductive layer covering the portion of the drain electrode exposed at the via hole and connected to the drain electrode; treating the via-hole conductive layer, so that a reflectivity of the via-hole conductive layer is lower than a reflectivity of the drain electrode; and forming a pixel electrode, the pixel electrode being connected with the drain electrode through the via-hole conductive layer.
Abstract:
Embodiments of the disclosure disclose an array substrate and a fabrication method thereof, and a display device. The fabrication method of the array substrate comprises: forming a thin film transistor; forming a passivation layer covering the thin film transistor, the passivation layer having a via hole and the via hole exposing at least a portion of a drain electrode of the thin film transistor; forming a via-hole conductive layer, the via-hole conductive layer covering the portion of the drain electrode exposed at the via hole and connected to the drain electrode; treating the via-hole conductive layer, so that a reflectivity of the via-hole conductive layer is lower than a reflectivity of the drain electrode; and forming a pixel electrode, the pixel electrode being connected with the drain electrode through the via-hole conductive layer.
Abstract:
A photosensitive sensor, a preparation method thereof, and an electronic device, wherein the photosensitive sensor includes a substrate, the substrate having a sensing area, a plurality of regularly arranged sensing units being provided in the sensing area, a shielding layer being provided on a side of the sensing units away from the substrate, the shielding layer covering the sensing area, a material of the shielding layer being a transparent conductive material, and the shielding layer being connected with a constant voltage signal terminal.
Abstract:
A patterning method of a quantum dot layer, a quantum dot layer pattern, a quantum dot device, a manufacturing method of the quantum dot device, and a display apparatus are provided, The patterning method of the quantum dot layer includes: forming a quantum dot layer, in which the quantum dot layer includes quantum dots and a photoinitiator; irradiating a preset portion of the quantum dot layer by light having a preset wavelength to quench the quantum dots in the preset portion and form a patterned quantum dot layer.