Abstract:
Methods, compositions, apparatuses, and systems are provided for a hybrid thermoplastic gel or sealant. The methods comprise providing (a) a base polymer having at least one functional group capable of crosslinking, (b) a functionalized extender, and (c) heat, and reacting the base polymer and functionalized extender in the presence of the heat to form the hybrid thermoplastic gel. The gel composition may comprise 5-40 wt % of a base polymer, 60-95 wt % of a functionalized extender, and 0-10 wt % of a crosslinker. A closure or interconnect system may comprise a housing, a cable, and a hybrid thermoplastic gel or sealant. A telecommunications apparatus may comprise a telecommunications component and a sealant that forms a seal with the telecommunications component. The sealant may comprise a sealant material having a first range of elongation followed by a second range of elongation.
Abstract:
An enclosure system for receiving a cable includes an enclosure having an inner chamber and an open position exposing the inner chamber and a closed position covering the inner chamber. A cable receiving port in a wall of the enclosure extends along a longitudinal axis from outside of the enclosure into the inner chamber. The cable receiving port is configured to receive a cable therein when the cable is advanced axially into the port without rotation of the cable when the enclosure is in the closed position. A mating member is associated with the cable receiving port that limits rotation of the cable when the cable is advanced axially into the port. An axial retention member is associated with the cable receiving port that limits axial movement of the cable out of the port when the cable is advanced axially into the port to a lock position.
Abstract:
A sealing apparatus includes a carrier and sealant contained by the carrier. An enclosure interface includes first and second pieces and defines one or more sealing channels that the sealing apparatus may be positioned within. The first piece defines an opening that has a perimeter sealed by the sealing apparatus. When the first and second pieces are mounted together, the sealant forms a first interface seal with the first piece and a second interface seal with the second piece. The one or more sealing channels are interconnected by one or more junction sections that include a volume of sealant. The carrier may define first and second channels that respectively contain first and second volumes of sealant. The method for making the sealing apparatus may include extruding the first and second volumes of sealant into the first and second channels.
Abstract:
An optical connector includes a first sub-assembly that is factory-installed to a first end of an optical fiber and a second sub-assembly that is field-installed to the first end of the optical fiber. The optical fiber and first sub-assembly can be routed through a structure (e.g., a building) prior to installation of the second sub-assembly. The second sub-assembly interlocks with the first sub-assembly to inhibit relative axial movement therebetween. Example first sub-assemblies include a ferrule, a hub, and a strain-relief sleeve that mount to an optical fiber. Example second sub-assemblies include a mounting block; and an outer connector housing forming a plug portion.
Abstract:
Aspects and techniques of the present disclosure relate to a cable sealing structure comprising a cable sealing body including a gel and methods of making anisotropic behavior in cable sealing structures made with a dry silicone gel. In one aspect, various three-dimensional printing techniques are used to make a cable sealing structure that includes a gel. The cable sealing body has a construction that elastically deforms to apply an elastic spring load to the gel. The cable sealing body has a construction with anisotropic deformation characteristics that allows the cable sealing body to be less deformable in one direction than in others. The cable sealing structure can be utilized to seal fiber optic cables more uniformly while limiting the potential of leakage.
Abstract:
Installing a fiber distribution system in a building having multiple floors includes routing a feed fiber to a first enclosure located at one of the floors of the building; disposing pre-connectorized ends of distribution fibers within the first enclosure; routing optical ferrules, which terminate second ends of the distribution fibers without connector bodies, through the building via a sheath; accessing the optical ferrules of the distribution fibers at respective floors; attaching connector bodies around the optical ferrules; and disposing the connector bodies within fiber distribution terminals at the appropriate floors.