Abstract:
A catalyst-free CVD method for forming graphene. The method involves placing a substrate within a reaction chamber, heating the substrate to a temperature between 600° C. and 1100° C., and introducing a carbon precursor into the chamber to form a graphene layer on a surface of the substrate. The method does not use plasma or a metal catalyst to form the graphene.
Abstract:
Surface modification layers and associated heat treatments, that may be provided on a sheet, a carrier, or both, to control both room-temperature van der Waals (and/or hydrogen) bonding and high temperature covalent bonding between the thin sheet and carrier. The room-temperature bonding is controlled so as to be sufficient to hold the thin sheet and carrier together during vacuum processing, wet processing, and/or ultrasonic cleaning processing, for example. And at the same time, the high temperature covalent bonding is controlled so as to prevent a permanent bond between the thin sheet and carrier during high temperature processing, as well as maintain a sufficient bond to prevent delamination during high temperature processing.
Abstract:
A thin-film transistor (TFT), includes: a substrate (202); an organic semiconductor (OSC) layer (210) positioned on the substrate; a dielectric layer (214) positioned on the OSC layer; and a polymeric interlayer (212) disposed in-between the OSC layer and the dielectric layer, such that the dielectric layer is configured to exhibit a double layer capacitance effect. A method of forming a thin-film transistor, includes: providing a substrate; providing a bottom gate layer atop the substrate; disposing consecutively from the substrate, an organic semiconductor (OSC) layer, a dielectric layer, and a top gate layer; and patterning the OSC layer, the dielectric layer, and the top gate layer using a single mask.
Abstract:
Embodiments are related to systems and methods for forming vias in a substrate, and more particularly to systems and methods for reducing substrate surface disruption during via formation.
Abstract:
Ceramic assembly can comprise a ceramic article comprising a thickness defined between a first major surface and a second major surface. The thickness can be about 100 micrometers or less. The ceramic assembly can comprise a polymer coating deposited over at least an outer peripheral portion of the first major surface of the ceramic article. The polymer coating can comprise a thickness of about 30 micrometers or less. An edge strength of the ceramic assembly can be greater than an edge strength of the ceramic article by about 50 MegaPascals or more. Methods of forming a ceramic assembly can comprise depositing a polymer coating on an outer peripheral portion of a first major surface of a ceramic article. Methods can further comprise curing the polymer coating.
Abstract:
A method for making a thin film transistor device includes forming a semiconductor film on a flexible substrate comprising a thin ribbon of refractory material that does not degrade when heated to temperatures greater than about 750° C. The semiconductor film is crystallized by heating the semiconductor film and the flexible substrate to at least about 750° C. A dielectric material is deposited on the crystallized semiconductor film. Gate, source, and drain electrodes are formed on the dielectric material.
Abstract:
A thin-film transistor (TFT), includes: a substrate (202); an organic semiconductor (OSC) layer (210) positioned on the substrate; a dielectric layer (214) positioned on the OSC layer; and a polymeric interlayer (212) disposed in-between the OSC layer and the dielectric layer, such that the dielectric layer is configured to exhibit a double layer capacitance effect. A method of forming a thin-film transistor, includes: providing a substrate; providing a bottom gate layer atop the substrate; disposing consecutively from the substrate, an organic semiconductor (OSC) layer, a dielectric layer, and a top gate layer; and patterning the OSC layer, the dielectric layer, and the top gate layer using a single mask.
Abstract:
A method of controllably bonding a thin sheet having a thin sheet bonding surface with a carrier having a carrier bonding surface, by depositing a carbonaceous surface modification layer onto at least one of the thin sheet bonding surface and the carrier bonding surface, incorporating polar groups with the surface modification layer, and then bonding the thin sheet bonding surface to the carrier bonding surface via the surface modification layer. The surface modification layer may include a bulk carbonaceous layer having a first polar group concentration and a surface layer having a second polar group concentration, wherein the second polar group concentration is higher than the first polar group concentration. The surface modification layer deposition and the treatment thereof may be performed by plasma polymerization techniques.
Abstract:
A method of fabricating microstructures of polar elastomers includes coating a substrate with a dielectric material including a polar elastomer, coating the dielectric material with a photoresist, exposing the photoresist to ultraviolet (UV) light through a photomask to define a pattern on the photoresist, developing the photoresist to form the pattern on the photoresist, etching the dielectric material to transfer the pattern from the photoresist to the dielectric material, and removing the photoresist from the patterned dielectric material
Abstract:
Disclosed devices (100) include a liquid crystal layer (140), a cover glass (105), a polarizer (115), and at least one anti-static coating disposed on at least one major surface (105A, 105C) of the cover glass, at least one major surface (115A, 115C) of the polarizer, or both. Methods for reducing mura (light leakage) in a touch-display device by means of this anti-static coating are also disclosed.